Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Identifying physiological and environmental influences on otolith chemistry in a coastal fishery species

Jasmin C. Martino https://orcid.org/0000-0002-3978-4362 A C D , Zoë A. Doubleday A C , Anthony J. Fowler B and Bronwyn M. Gillanders A
+ Author Affiliations
- Author Affiliations

A Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia.

B South Australian Research and Development Institute (Aquatic Sciences), West Beach, SA 5024, Australia.

C Present Address: Future Industries Institute, University of South Australia, SA 5095, Australia.

D Corresponding author. Email: jasmin.martino@unisa.edu.au

Marine and Freshwater Research 72(6) 904-921 https://doi.org/10.1071/MF20196
Submitted: 17 June 2020  Accepted: 13 October 2020   Published: 15 December 2020

Abstract

Otolith (ear stone) chemistry provides powerful insights into the lives of fish. Although frequently used to reconstruct past environments, the influence of physiology remains unsettled. As such, we investigated the relationships between otolith chemistry, physiological factors and environmental factors in an iconic fishery species, snapper (Chrysophrys auratus). Lifetime otolith profiles were analysed of carbon (δ13C) and oxygen (δ18O) isotopes, and elemental concentrations of lithium (Li : Ca), magnesium (Mg : Ca), manganese (Mn : Ca), strontium (Sr : Ca), and barium (Ba : Ca). Mixed-effects modelling alongside a detailed literature review was used to investigate physiological (age, otolith growth rate, fish size, sex) and environmental influences (sea-surface temperature and chlorophyll-a) on otolith chemistry. Carbon isotopes and magnesium related to physiological factors, suggesting their potential as physiological proxies. Physiology also weakly related to strontium and lithium. By contrast, oxygen isotopes, barium, and manganese (except for natal signatures) were suggested to provide insights into past environments. Our study stresses the importance of consistency in biological characteristics for study designs, and highlights the potential of physiological proxies for distinguishing between populations in uniform water bodies. This study has not only reinforced our confidence in field applications of otolith chemistry, but has furthered our understanding of the influence of physiology.

Keywords: Chrysophrys auratus, otolith chemistry, physiology, teleost.


References

Adkins, J. F., McIntyre, K., and Schrag, D. P. (2002). The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773.
The salinity, temperature, and δ18O of the glacial deep ocean.Crossref | GoogleScholarGoogle Scholar | 12459585PubMed |

Auer, S. K., Salin, K., Rudolf, A. M., Anderson, G. J., and Metcalfe, N. B. (2015). The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability. Functional Ecology 29, 479–486.
The optimal combination of standard metabolic rate and aerobic scope for somatic growth depends on food availability.Crossref | GoogleScholarGoogle Scholar |

Barnes, T. C., and Gillanders, B. M. (2013). Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Canadian Journal of Fisheries and Aquatic Sciences 70, 1159–1166.
Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions.Crossref | GoogleScholarGoogle Scholar |

Bath, G. E., Thorrold, S. R., Jones, C. M., Campana, S. E., McLaren, J. W., and Lam, J. W. H. (2000). Strontium and barium uptake in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 64, 1705–1714.
Strontium and barium uptake in aragonitic otoliths of marine fish.Crossref | GoogleScholarGoogle Scholar |

Begg, G. A., and Weidman, C. R. (2001). Stable d13C and d18O isotopes in otoliths of haddock Melanogrammus aeglefinus from the northwest Atlantic Ocean. Marine Ecology Progress Series 216, 223–233.
Stable d13C and d18O isotopes in otoliths of haddock Melanogrammus aeglefinus from the northwest Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Borrell, A., Saiz, L., Víkingsson, G. A., Gaufier, P., López Fernández, A., and Aguilar, A. (2018). Fin whales as bioindicators of multi-decadal change in carbon and oxygen stable isotope shifts in the North Atlantic. Marine Environmental Research 138, 129–134.
Fin whales as bioindicators of multi-decadal change in carbon and oxygen stable isotope shifts in the North Atlantic.Crossref | GoogleScholarGoogle Scholar | 29724493PubMed |

Brodie, J., De’Ath, G., Devlin, M., Furnas, M., and Wright, M. (2007). Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon. Marine and Freshwater Research 58, 342–353.
Spatial and temporal patterns of near-surface chlorophyll a in the Great Barrier Reef lagoon.Crossref | GoogleScholarGoogle Scholar |

Brophy, D., Jeffries, T. E., and Danilowicz, B. S. (2004). Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Marine Biology 144, 779–786.
Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins.Crossref | GoogleScholarGoogle Scholar |

Buckel, J. A., Sharack, B. L., and Zdanowicz, V. S. (2004). Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore. Journal of Fish Biology 64, 1469–1484.
Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33, 261–304.
Multimodel inference: understanding AIC and BIC in model selection.Crossref | GoogleScholarGoogle Scholar |

Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Chemistry and composition of fish otoliths: pathways, mechanisms and applications.Crossref | GoogleScholarGoogle Scholar |

Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197–242.
Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods.Crossref | GoogleScholarGoogle Scholar |

Chung, M.-T. (2015). Functional and life-history traits in deep-sea fishes. Ph.D. Thesis, University of Southampton, Southampton, UK.

Chung, M.-T., Trueman, C. N., Godiksen, J. A., and Grønkjær, P. (2019a). Otolith δ13C values as a metabolic proxy: approaches and mechanical underpinnings. Marine and Freshwater Research 70, 1747–1756.
Otolith δ13C values as a metabolic proxy: approaches and mechanical underpinnings.Crossref | GoogleScholarGoogle Scholar |

Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E., and Grønkjær, P. (2019b). Field metabolic rates of teleost fishes are recorded in otolith carbonate. Communications Biology 2, 24.
Field metabolic rates of teleost fishes are recorded in otolith carbonate.Crossref | GoogleScholarGoogle Scholar | 30675522PubMed |

Clarke, A., and Johnston, N. M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. Journal of Animal Ecology 68, 893–905.
Scaling of metabolic rate with body mass and temperature in teleost fish.Crossref | GoogleScholarGoogle Scholar |

Clarke, L. M., Thorrold, S. R., and Conover, D. O. (2011). Population differences in otolith chemistry have a genetic basis in Menidia menidia. Canadian Journal of Fisheries and Aquatic Sciences 68, 105–114.
Population differences in otolith chemistry have a genetic basis in Menidia menidia.Crossref | GoogleScholarGoogle Scholar |

Collingsworth, P. D., Van Tassell, J. J., Olesik, J. W., and Marschall, E. A. (2010). Effects of temperature and elemental concentration on the chemical composition of juvenile yellow perch (Perca flavescens) otoliths. Canadian Journal of Fisheries and Aquatic Sciences 67, 1187–1196.
Effects of temperature and elemental concentration on the chemical composition of juvenile yellow perch (Perca flavescens) otoliths.Crossref | GoogleScholarGoogle Scholar |

Crichton, R. R. (2008). ‘Biological Inorganic Chemistry: an Introduction.’ (Elsevier Science: London, UK.)

Da Silva, J. F., and Williams, R. J. P. (2001). ‘The Biological Chemistry of the Elements: the Inorganic Chemistry of Life.’ (Oxford University Press: Oxford, UK.)

Darnaude, A. M., Sturrock, A., Trueman, C. N., Mouillot, D., EIMF Campana, S. E., and Hunter, E. (2014). Listening in on the past: what can otolith δ18O values really tell us about the environmental history of fishes? PLoS One 9, e108539.
Listening in on the past: what can otolith δ18O values really tell us about the environmental history of fishes?Crossref | GoogleScholarGoogle Scholar | 25279667PubMed |

De Souza, P., and Bonilla-Rodriguez, G. O. (2007). Fish hemoglobins. Brazilian Journal of Medical and Biological Research 40, 769–778.
Fish hemoglobins.Crossref | GoogleScholarGoogle Scholar | 17581674PubMed |

Devereux, I. (1967). Temperature measurements from oxygen isotope ratios of fish otoliths. Science 155, 1684–1685.
Temperature measurements from oxygen isotope ratios of fish otoliths.Crossref | GoogleScholarGoogle Scholar | 6020293PubMed |

DiMaria, R., Miller, J., and Hurst, T. (2010). Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalus. Environmental Biology of Fishes 89, 453–462.
Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalus.Crossref | GoogleScholarGoogle Scholar |

Dorval, E., Jones, C. M., Hannigan, R., and van Montfrans, J. (2007). Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Canadian Journal of Fisheries and Aquatic Sciences 64, 411–424.
Relating otolith chemistry to surface water chemistry in a coastal plain estuary.Crossref | GoogleScholarGoogle Scholar |

Doubleday, Z. A., Izzo, C., Woodcock, S. H., and Gillanders, B. M. (2013). Relative contribution of water and diet to otolith chemistry in freshwater fish. Aquatic Biology 18, 271–280.
Relative contribution of water and diet to otolith chemistry in freshwater fish.Crossref | GoogleScholarGoogle Scholar |

Doubleday, Z. A., Harris, H. H., Izzo, C., and Gillanders, B. M. (2014). Strontium randomly substituting for calcium in fish otolith aragonite. Analytical Chemistry 86, 865–869.
Strontium randomly substituting for calcium in fish otolith aragonite.Crossref | GoogleScholarGoogle Scholar | 24299165PubMed |

Downing, J. A., Plante, C., and Lalonde, S. (1990). Fish production correlated with primary productivity, not the morphoedaphic index. Canadian Journal of Fisheries and Aquatic Sciences 47, 1929–1936.
Fish production correlated with primary productivity, not the morphoedaphic index.Crossref | GoogleScholarGoogle Scholar |

Edyvane, K. S. (1999). Conserving marine biodiversity in South Australia. Part 2. Identification of areas of high conservation values in South Australia. (South Australian Research and Development Institute (Aquatic Sciences): Adelaide, SA, Australia.) Available at https://pir.sa.gov.au/__data/assets/pdf_file/0015/231513/marine_biodiversity_part2_full_version.pdf [Verified 2 November 2020].

Elsdon, T. S., and Gillanders, B. M. (2003). Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Marine Ecology Progress Series 260, 263–272.
Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri.Crossref | GoogleScholarGoogle Scholar |

Elsdon, T. S., Wells, B. K., Campana, S. E., Gillanders, B. M., Jones, C. M., Limburg, K. E., Secor, D. H., Thorrold, S. R., and Walther, B. D. (2008). Otolith chemistry to describe movements and life‐history parameters of fishes: hypotheses, assumptions, limitations, and inferences. Oceanography and Marine Biology – an Annual Review 46, 297–330.
Otolith chemistry to describe movements and life‐history parameters of fishes: hypotheses, assumptions, limitations, and inferences.Crossref | GoogleScholarGoogle Scholar |

Fairclough, D. V., Edmonds, J. S., Jackson, G., Lenanton, R. C. J., Kemp, J., Molony, B. W., Keay, I. S., Crisafulli, B. M., and Wakefield, C. B. (2013). A comparison of the stock structures of two exploited demersal teleosts, employing complementary methods of otolith element analysis. Journal of Experimental Marine Biology and Ecology 439, 181–195.
A comparison of the stock structures of two exploited demersal teleosts, employing complementary methods of otolith element analysis.Crossref | GoogleScholarGoogle Scholar |

Fidhiany, L., and Winckler, K. (1998). Influence of body mass, age, and maturation on specific oxygen consumption in a freshwater cichlid fish, Cichlasoma nigrofasciatum (Günther, 1869). Comparative Biochemistry and Physiology – A. Molecular & Integrative Physiology 119, 613–619.
Influence of body mass, age, and maturation on specific oxygen consumption in a freshwater cichlid fish, Cichlasoma nigrofasciatum (Günther, 1869).Crossref | GoogleScholarGoogle Scholar |

Fowler, A. J., Gillanders, B. M., and Hall, K. C. (2004). Adult migration, population replenishment and geographic structure for snapper in South Australia. South Australian Research and Development Institute (Aquatic Sciences). Project number 2002/001, publication number RD04/0163. (South Australian Research and Development Institute (Aquatic Sciences): Adelaide, SA, Australia.) Available at http://frdc.com.au/Archived-Reports/FRDC%20Projects/2002-001-DLD.pdf [Verified 2 November 2020].

Fowler, A. J., Gillanders, B. M., and Hall, K. C. (2005). Relationship between elemental concentration and age from otoliths of adult snapper (Pagrus auratus, Sparidae): implications for movement and stock structure. Marine and Freshwater Research 56, 661–676.
Relationship between elemental concentration and age from otoliths of adult snapper (Pagrus auratus, Sparidae): implications for movement and stock structure.Crossref | GoogleScholarGoogle Scholar |

Fowler, A. J., McGarvey, R., Carroll, J., Feenstra, J. E., Jackson, W. B., and Lloyd, M. T. (2016). Snapper (Chrysophrus auratus) Fishery. Fishery assessment report to PIRSA Fisheries and Aquaculture. F2007/000523-4. SARDI Research Report Series number 930, South Australian Research and Development Institute (Aquatic Sciences), Adelaide, SA, Australia.

Fowler, A. J., Hamer, P. A., and Kemp, J. (2017). Age-related otolith chemistry profiles help resolve demographics and meta-population structure of a widely dispersed, coastal fishery species. Fisheries Research 189, 77–94.
Age-related otolith chemistry profiles help resolve demographics and meta-population structure of a widely dispersed, coastal fishery species.Crossref | GoogleScholarGoogle Scholar |

Fowler, A. J., Steer, M. A., McGarvey, R., and Smart, J. (2019). Snapper (Chrysophrys aurartus) fishery. Fishery assessment report to PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide, SA, Australia.

Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical Software 8, 1–27.
Effect displays in R for generalised linear models.Crossref | GoogleScholarGoogle Scholar |

Fox, J., and Weisberg, S. (2019). ‘An R Companion to Applied Regression’, 3rd edn. Weisberg (Sage: Thousand Oaks CA, USA.) Available at https://socialsciences.mcmaster.ca/jfox/Books/Companion/ [Verified 2 November 2020].

Fraile, I., Arrizabalaga, H., Groeneveld, J., Kölling, M., Santos, M. N., Macias, D., Addis, P., Dettman, D. L., Karakulak, S., and Deguara, S. (2016). The imprint of anthropogenic CO2 emissions on Atlantic bluefin tuna otoliths. Journal of Marine Systems 158, 26–33.
The imprint of anthropogenic CO2 emissions on Atlantic bluefin tuna otoliths.Crossref | GoogleScholarGoogle Scholar |

Gaetani, G. A., and Cohen, A. L. (2006). Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochimica et Cosmochimica Acta 70, 4617–4634.
Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies.Crossref | GoogleScholarGoogle Scholar |

Gauldie, R. W. (1996). Biological factors controlling the carbon isotope record in fish otoliths: Principles and evidence. Comparative Biochemistry and Physiology – B. Biochemistry & Molecular Biology 115, 201–208.
Biological factors controlling the carbon isotope record in fish otoliths: Principles and evidence.Crossref | GoogleScholarGoogle Scholar |

Geffen, A. J. (2012). Otolith oxygen and carbon stable isotopes in wild and laboratory-reared plaice (Pleuronectes platessa). Environmental Biology of Fishes 95, 419–430.
Otolith oxygen and carbon stable isotopes in wild and laboratory-reared plaice (Pleuronectes platessa).Crossref | GoogleScholarGoogle Scholar |

Ghosh, P., Eiler, J., Campana, S. E., and Feeney, R. F. (2007). Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochimica et Cosmochimica Acta 71, 2736–2744.
Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths.Crossref | GoogleScholarGoogle Scholar |

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science 293, 2248–2251.
Effects of size and temperature on metabolic rate.Crossref | GoogleScholarGoogle Scholar | 11567137PubMed |

Godiksen, J., Svenning, M.-A., Dempson, J. B., Marttila, M., Storm-Suke, A., and Power, M. (2010). Development of a species-specific fractionation equation for Arctic charr (Salvelinus alpinus (L.)): an experimental approach. Hydrobiologia 650, 67–77.
Development of a species-specific fractionation equation for Arctic charr (Salvelinus alpinus (L.)): an experimental approach.Crossref | GoogleScholarGoogle Scholar |

Gomon, MF, Bray, DJ, Kuiter, RH (2008). ‘Fishes of Australia’s Southern Coast.’ (Reed New Holland, Museum Victoria: Sydney, NSW, Australia.)

Grammer, G. L., Morrongiello, J. R., Izzo, C., Hawthorne, P. J., Middleton, J. F., and Gillanders, B. M. (2017). Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecological Monographs 87, 487–507.
Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry.Crossref | GoogleScholarGoogle Scholar |

Grønkjær, P. (2016). Otoliths as individual indicators: a reappraisal of the link between fish physiology and otolith characteristics. Marine and Freshwater Research 67, 881–888.
Otoliths as individual indicators: a reappraisal of the link between fish physiology and otolith characteristics.Crossref | GoogleScholarGoogle Scholar |

Hamer, P. A., and Jenkins, G. P. (2007). Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology 71, 1035–1055.
Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth.Crossref | GoogleScholarGoogle Scholar |

Hamer, P. A., Jenkins, G. P., and Gillanders, B. M. (2003). Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation. Marine Ecology Progress Series 263, 261–273.
Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation.Crossref | GoogleScholarGoogle Scholar |

Hamer, P. A., Jenkins, G. P., and Coutin, P. (2006). Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuarine, Coastal and Shelf Science 68, 686–702.
Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicator of migration between an embayment and ocean waters in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Heimbrand, Y., Limburg, K. E., Hüssy, K., Casini, M., Sjöberg, R., Palmén Bratt, A.-M., Levinsky, S.-E., Karpushevskaia, A., Radtke, K., and Öhlund, J. (2020). Seeking the true time: exploring otolith chemistry as an age-determination tool. Journal of Fish Biology 97, 552–565.
Seeking the true time: exploring otolith chemistry as an age-determination tool.Crossref | GoogleScholarGoogle Scholar | 32515105PubMed |

Hellstrom, J., Paton, C., Woodhead, J., and Hergt, J. (2008). Iolite: software for spatially resolved LA–(quad and MC) ICPMS analysis. Mineralogical Association of Canada 40, 343–348.

Hicks, A. S., Closs, G. P., and Swearer, S. E. (2010). Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: a multi-element approach for tracking diadromous migrations. Journal of Experimental Marine Biology and Ecology 394, 86–97.
Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: a multi-element approach for tracking diadromous migrations.Crossref | GoogleScholarGoogle Scholar |

Hoff, G. R., and Fuiman, L. A. (1995). Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bulletin of Marine Science 56, 578–591.

Høie, H., Folkvord, A., and Otterlei, E. (2003). Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L) otoliths. Journal of Experimental Marine Biology and Ecology 289, 41–58.
Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L) otoliths.Crossref | GoogleScholarGoogle Scholar |

Høie, H., Otterlei, E., and Folkvord, A. (2004a). Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES Journal of Marine Science. Journal du Conseil 61, 243–251.
Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.).Crossref | GoogleScholarGoogle Scholar |

Høie, H., Andersson, C., Folkvord, A., and Karlsen, Ø. (2004b). Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Marine Biology 144, 1039–1049.
Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill.Crossref | GoogleScholarGoogle Scholar |

Hüssy, K., and Mosegaard, H. (2004). Atlantic cod (Gadus morhua) growth and otolith accretion characteristics modelled in a bioenergetics context. Canadian Journal of Fisheries and Aquatic Sciences 61, 1021–1031.
Atlantic cod (Gadus morhua) growth and otolith accretion characteristics modelled in a bioenergetics context.Crossref | GoogleScholarGoogle Scholar |

Hüssy, K., Limburg, K. E., de Pontual, H., Thomas, O. R. B., Cook, P. K., Heimbrand, Y., Blass, M., and Sturrock, A. M. (2020). Trace element patterns in otoliths: the role of biomineralization. Reviews in Fisheries Science & Aquaculture , .
Trace element patterns in otoliths: the role of biomineralization.Crossref | GoogleScholarGoogle Scholar |

Imsland, A. K., Brix, O., Nævdal, G., and Samuelsen, E. N. (1997). Hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque), their oxygen affinity properties and relation with growth. Comparative Biochemistry and Physiology – A. Physiology 116, 157–165.
Hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque), their oxygen affinity properties and relation with growth.Crossref | GoogleScholarGoogle Scholar |

Izzo, C., Doubleday, Z. A., and Gillanders, B. M. (2016). Where do elements bind within the otoliths of fish? Marine and Freshwater Research 67, 1072–1076.
Where do elements bind within the otoliths of fish?Crossref | GoogleScholarGoogle Scholar |

Izzo, C., Doubleday, Z. A., Grammer, G. L., Disspain, M. C. F., Ye, Q., and Gillanders, B. M. (2017). Seasonally resolved environmental reconstructions using fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 74, 23–31.
Seasonally resolved environmental reconstructions using fish otoliths.Crossref | GoogleScholarGoogle Scholar |

Izzo, C., Reis-Santos, P., and Gillanders, B. M. (2018). Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation. Fish and Fisheries 19, 441–454.
Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation.Crossref | GoogleScholarGoogle Scholar |

Jamieson, R., Schwarcz, H., and Brattey, J. (2004). Carbon isotopic records from the otoliths of Atlantic cod (Gadus morhua) from eastern Newfoundland, Canada. Fisheries Research 68, 83–97.
Carbon isotopic records from the otoliths of Atlantic cod (Gadus morhua) from eastern Newfoundland, Canada.Crossref | GoogleScholarGoogle Scholar |

Kailola, P., Williams, M., Stewart, P., Reichelt, R., McNee, A., and Grieve, C. (1993). ‘Australian Fisheries Resources.’ (Bureau of Resource Sciences, Department of Primary Industries and Energy: Canberra, ACT, Australia.)

Kalish, J. M. (1989). Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. Journal of Experimental Marine Biology and Ecology 132, 151–178.
Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition.Crossref | GoogleScholarGoogle Scholar |

Kalish, J. M. (1991a). Determinants of otolith chemistry: seasonal-variation in the composition of blood-plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus. Marine Ecology Progress Series 74, 137–159.
Determinants of otolith chemistry: seasonal-variation in the composition of blood-plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus.Crossref | GoogleScholarGoogle Scholar |

Kalish, J. M. (1991b). Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Marine Biology 110, 37–47.
Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta).Crossref | GoogleScholarGoogle Scholar |

Kalish, J. M. (1991c). 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Marine Ecology Progress Series 75, 191–203.
13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects.Crossref | GoogleScholarGoogle Scholar |

Keeling, C. D. (1979). The Suess effect: 13carbon–14carbon interrelations. Environment International 2, 229–300.
The Suess effect: 13carbon–14carbon interrelations.Crossref | GoogleScholarGoogle Scholar |

Kim, S.-T., and O’Neil, J. R. (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 3461–3475.
Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates.Crossref | GoogleScholarGoogle Scholar |

Kitagawa, T., Ishimura, T., Uozato, R., Shirai, K., Amano, Y., Shinoda, A., Otake, T., Tsunogai, U., and Kimura, S. (2013). Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Marine Ecology Progress Series 481, 199–209.
Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature.Crossref | GoogleScholarGoogle Scholar |

Kroopnick, P. (1985). The distribution of 13C of ΣCO2 in the world oceans. Deep-Sea Research – A. Oceanographic Research Papers 32, 57–84.
The distribution of 13C of ΣCO2 in the world oceans.Crossref | GoogleScholarGoogle Scholar |

Limburg, K. E., Olson, C., Walther, Y., Dale, D., Slomp, C. P., and Høie, H. (2011). Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proceedings of the National Academy of Sciences of the United States of America 108, E177–E182.
Tracking Baltic hypoxia and cod migration over millennia with natural tags.Crossref | GoogleScholarGoogle Scholar | 21518871PubMed |

Limburg, K. E., Walther, B. D., Lu, Z., Jackman, G., Mohan, J., Walther, Y., Nissling, A., Weber, P. K., and Schmitt, A. K. (2015). In search of the dead zone: use of otoliths for tracking fish exposure to hypoxia. Journal of Marine Systems 141, 167–178.
In search of the dead zone: use of otoliths for tracking fish exposure to hypoxia.Crossref | GoogleScholarGoogle Scholar |

Limburg, K. E., Wuenschel, M. J., Hüssy, K., Heimbrand, Y., and Samson, M. (2018). Making the otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence. Reviews in Fisheries Science & Aquaculture 26, 479–493.
Making the otolith magnesium chemical calendar-clock tick: plausible mechanism and empirical evidence.Crossref | GoogleScholarGoogle Scholar |

Lin, S.-H., Chang, C.-W., Iizuka, Y., and Tzeng, W.-N. (2007). Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica. Journal of Experimental Marine Biology and Ecology 341, 254–263.
Salinities, not diets, affect strontium/calcium ratios in otoliths of Anguilla japonica.Crossref | GoogleScholarGoogle Scholar |

Loewen, T. N., Carriere, B., Reist, J. D., Halden, N. M., and Anderson, W. G. (2016). Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comparative Biochemistry and Physiology – A. Molecular & Integrative Physiology 202, 123–140.
Linking physiology and biomineralization processes to ecological inferences on the life history of fishes.Crossref | GoogleScholarGoogle Scholar |

Macdonald, J. I., Drysdale, R. N., Witt, R., Cságoly, Z., and Marteinsdóttir, G. (2020). Isolating the influence of ontogeny helps predict island-wide variability in fish otolith chemistry. Reviews in Fish Biology and Fisheries 30, 173–202.
Isolating the influence of ontogeny helps predict island-wide variability in fish otolith chemistry.Crossref | GoogleScholarGoogle Scholar |

Makiguchi, Y., Nii, H., Nakao, K., and Ueda, H. (2017). Sex differences in metabolic rate and swimming performance in pink salmon (Oncorhynchus gorbuscha): the effect of male secondary sexual traits. Ecology Freshwater Fish 26, 322–332.
Sex differences in metabolic rate and swimming performance in pink salmon (Oncorhynchus gorbuscha): the effect of male secondary sexual traits.Crossref | GoogleScholarGoogle Scholar |

Mann, S. (2001). ‘Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry.’ (Oxford University Press on Demand: New York, NY, USA.)

Martin, G. B., and Thorrold, S. R. (2005). Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series 293, 223–232.
Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus.Crossref | GoogleScholarGoogle Scholar |

Martin, G. B., and Wuenschel, M. J. (2006). Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Marine Ecology Progress Series 324, 229–239.
Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus.Crossref | GoogleScholarGoogle Scholar |

Martin, G. B., Thorrold, S. R., and Jones, C. M. (2004). Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Canadian Journal of Fisheries and Aquatic Sciences 61, 34–42.
Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus).Crossref | GoogleScholarGoogle Scholar |

Martino, J., Doubleday, Z. A., Woodcock, S. H., and Gillanders, B. M. (2017). Elevated carbon dioxide and temperature affects otolith development, but not chemistry, in a diadromous fish. Journal of Experimental Marine Biology and Ecology 495, 57–64.
Elevated carbon dioxide and temperature affects otolith development, but not chemistry, in a diadromous fish.Crossref | GoogleScholarGoogle Scholar |

Martino, J. C., Fowler, A. J., Doubleday, Z. A., Grammer, G. L., and Gillanders, B. M. (2019a). Using otolith chronologies to understand long-term trends and extrinsic drivers of growth in fisheries. Ecosphere 10, e02553.
Using otolith chronologies to understand long-term trends and extrinsic drivers of growth in fisheries.Crossref | GoogleScholarGoogle Scholar |

Martino, J. C., Doubleday, Z. A., and Gillanders, B. M. (2019b). Metabolic effects on carbon isotope biomarkers in fish. Ecological Indicators 97, 10–16.
Metabolic effects on carbon isotope biomarkers in fish.Crossref | GoogleScholarGoogle Scholar |

Martino, J. C., Doubleday, Z. A., Chung, M.-T., and Gillanders, B. M. (2020). Experimental support towards a metabolic proxy in fish using otolith carbon isotopes. The Journal of Experimental Biology 223, jeb217091.
Experimental support towards a metabolic proxy in fish using otolith carbon isotopes.Crossref | GoogleScholarGoogle Scholar | 32220900PubMed |

Miller, J. (2009). The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops. Journal of Fish Biology 75, 39–60.
The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops.Crossref | GoogleScholarGoogle Scholar | 20738481PubMed |

Miller, J. A. (2011). Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology 405, 42–52.
Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions.Crossref | GoogleScholarGoogle Scholar |

Milton, D. A., and Chenery, S. R. (2001). Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). Journal of Experimental Marine Biology and Ecology 264, 47–65.
Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer).Crossref | GoogleScholarGoogle Scholar |

Mohan, J. A., Rulifson, R. A., Corbett, D. R., and Halden, N. M. (2012). Validation of oligohaline elemental otolith signatures of striped bass by use of in situ caging experiments and water chemistry. Marine and Coastal Fisheries 4, 57–70.
Validation of oligohaline elemental otolith signatures of striped bass by use of in situ caging experiments and water chemistry.Crossref | GoogleScholarGoogle Scholar |

Mohan, J., Rahman, M. S., Thomas, P., and Walther, B. (2014). Influence of constant and periodic experimental hypoxic stress on Atlantic croaker otolith chemistry. Aquatic Biology 20, 1–11.
Influence of constant and periodic experimental hypoxic stress on Atlantic croaker otolith chemistry.Crossref | GoogleScholarGoogle Scholar |

Moreira, C., Froufe, E., Sial, A. N., Caeiro, A., Vaz-Pires, P., and Correia, A. T. (2018). Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fisheries Research 197, 113–122.
Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry.Crossref | GoogleScholarGoogle Scholar |

Morissette, O., Bernatchez, L., Wiedenbeck, M., and Sirois, P. (2020). Deciphering lifelong thermal niche using otolith δ18O thermometry within supplemented lake trout (Salvelinus namaycush) populations. Freshwater Biology 65, 1114–1127.
Deciphering lifelong thermal niche using otolith δ18O thermometry within supplemented lake trout (Salvelinus namaycush) populations.Crossref | GoogleScholarGoogle Scholar |

Morrongiello, J. R., and Thresher, R. E. (2015). A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example. Ecological Monographs 85, 93–115.
A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example.Crossref | GoogleScholarGoogle Scholar |

Morrongiello, J. R., Walsh, C. T., Gray, C. A., Stocks, J. R., and Crook, D. A. (2014). Environmental change drives long-term recruitment and growth variation in an estuarine fish. Global Change Biology 20, 1844–1860.
Environmental change drives long-term recruitment and growth variation in an estuarine fish.Crossref | GoogleScholarGoogle Scholar | 24510897PubMed |

Norriss, J. V., and Crisafulli, B. (2010). Longevity in Australian snapper Pagrus auratus (Sparidae). Journal of the Royal Society of Western Australia 93, 129–132.

Oczkowski, A., Taplin, B., Pruell, R., Pimenta, A., Johnson, R., and Grear, J. (2018). Carbon stable isotope values in plankton and mussels reflect changes in carbonate chemistry associated with nutrient enhanced net production. Frontiers in Marine Science 5, 43.
Carbon stable isotope values in plankton and mussels reflect changes in carbonate chemistry associated with nutrient enhanced net production.Crossref | GoogleScholarGoogle Scholar |

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011). Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–2518.
Iolite: freeware for the visualisation and processing of mass spectrometric data.Crossref | GoogleScholarGoogle Scholar |

Payan, P., De Pontual, H., Bœuf, G., and Mayer-Gostan, N. (2004). Endolymph chemistry and otolith growth in fish. Comptes Rendus. Palévol 3, 535–547.
Endolymph chemistry and otolith growth in fish.Crossref | GoogleScholarGoogle Scholar |

Peck, M., and Moyano, M. (2016). Measuring respiration rates in marine fish larvae: challenges and advances. Journal of Fish Biology 88, 173–205.
Measuring respiration rates in marine fish larvae: challenges and advances.Crossref | GoogleScholarGoogle Scholar | 26768975PubMed |

Pors Nielsen, S. (2004). The biological role of strontium. Bone 35, 583–588.
The biological role of strontium.Crossref | GoogleScholarGoogle Scholar | 15336592PubMed |

Reis-Santos, P., Tanner, S. E., Elsdon, T. S., Cabral, H. N., and Gillanders, B. M. (2013). Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology 446, 245–252.
Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax.Crossref | GoogleScholarGoogle Scholar |

Reis-Santos, P., Vasconcelos, R. P., Tanner, S. E., Fonseca, V. F., Cabral, H. N., and Gillanders, B. M. (2018). Extrinsic and intrinsic factors shape the ability of using otolith chemistry to characterize estuarine environmental histories. Marine Environmental Research 140, 332–341.
Extrinsic and intrinsic factors shape the ability of using otolith chemistry to characterize estuarine environmental histories.Crossref | GoogleScholarGoogle Scholar | 30251648PubMed |

Rennie, M. D., Purchase, C. F., Lester, N., Collins, N. C., Shuter, B. J., and Abrams, P. A. (2008). Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids. Journal of Animal Ecology 77, 916–926.
Lazy males? Bioenergetic differences in energy acquisition and metabolism help to explain sexual size dimorphism in percids.Crossref | GoogleScholarGoogle Scholar |

Richardson, K., and Bendtsen, J. (2017). Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study. Philosophical Transactions – Royal Society. Mathematical, Physical, and Engineering Sciences 375, 20160329.
Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.Crossref | GoogleScholarGoogle Scholar |

Rljnsdorp, A. D., and Ibelings, B. (1989). Sexual dimorphism in the energetics of reproduction and growth of North Sea plaice, Pleuronectes platessa L. Journal of Fish Biology 35, 401–415.
Sexual dimorphism in the energetics of reproduction and growth of North Sea plaice, Pleuronectes platessa L.Crossref | GoogleScholarGoogle Scholar |

Rogers, T. A., Fowler, A. J., Steer, M. A., and Gillanders, B. M. (2019a). Spatial connectivity during the early life history of a temperate marine fish inferred from otolith microstructure and geochemistry. Estuarine, Coastal and Shelf Science 227, 106342.
Spatial connectivity during the early life history of a temperate marine fish inferred from otolith microstructure and geochemistry.Crossref | GoogleScholarGoogle Scholar |

Rogers, T. A., Fowler, A. J., Steer, M. A., and Gillanders, B. M. (2019b). Discriminating natal source populations of a temperate marine fish using larval otolith chemistry. Frontiers in Marine Science 6, 711.
Discriminating natal source populations of a temperate marine fish using larval otolith chemistry.Crossref | GoogleScholarGoogle Scholar |

Rosenfeld, J., Van Leeuwen, T., Richards, J., and Allen, D. (2015). Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life-history adaptation in salmonids. Journal of Animal Ecology 84, 4–20.
Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life-history adaptation in salmonids.Crossref | GoogleScholarGoogle Scholar |

Sanchez‐Jerez, P., Gillanders, B., and Kingsford, M. (2002). Spatial variability of trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows. Journal of Fish Biology 61, 801–821.
Spatial variability of trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Schmittner, A., Gruber, N., Mix, A. C., Key, R. M., Tagliabue, A., and Westberry, T. K. (2013). Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean. Biogeosciences 10, 5793–5816.
Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean.Crossref | GoogleScholarGoogle Scholar |

Schöne, B. R., Schmitt, K., and Maus, M. (2017). Effects of sample pretreatment and external contamination on bivalve shell and Carrara marble δ18O and δ13C signatures. Palaeogeography, Palaeoclimatology, Palaeoecology 484, 22–32.
Effects of sample pretreatment and external contamination on bivalve shell and Carrara marble δ18O and δ13C signatures.Crossref | GoogleScholarGoogle Scholar |

Schurmann, H., and Steffensen, J. (1997). Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. Journal of Fish Biology 50, 1166–1180.

Schwarcz, H. P., Gao, Y., Campana, S., Browne, D., Knyf, M., and Brand, U. (1998). Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 55, 1798–1806.
Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua).Crossref | GoogleScholarGoogle Scholar |

Secor, D. H., Henderson-Arzapalo, A., and Piccoli, P. (1995). Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? Journal of Experimental Marine Biology and Ecology 192, 15–33.
Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes?Crossref | GoogleScholarGoogle Scholar |

Shirai, K., Otake, T., Amano, Y., Kuroki, M., Ushikubo, T., Kita, N. T., Murayama, M., Tsukamoto, K., and Valley, J. W. (2018). Temperature and depth distribution of Japanese eel eggs estimated using otolith oxygen stable isotopes. Geochimica et Cosmochimica Acta 236, 373–383.
Temperature and depth distribution of Japanese eel eggs estimated using otolith oxygen stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Sinclair, D. J. (2005). Correlated trace element ‘vital effects’ in tropical corals: a new geochemical tool for probing biomineralization. Geochimica et Cosmochimica Acta 69, 3265–3284.
Correlated trace element ‘vital effects’ in tropical corals: a new geochemical tool for probing biomineralization.Crossref | GoogleScholarGoogle Scholar |

Solomon, C. T., Weber, P. K., Cech, J. J. J., Ingram, B. L., Conrad, M. E., Machavaram, M. V., Pogodina, A. R., and Franklin, R. L. (2006). Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63, 79–89.
Experimental determination of the sources of otolith carbon and associated isotopic fractionation.Crossref | GoogleScholarGoogle Scholar |

Stanley, R. R., Bradbury, I. R., DiBacco, C., Snelgrove, P. V., Thorrold, S. R., and Killen, S. S. (2015). Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua). ICES Journal of Marine Science 72, 2350–2363.
Environmentally mediated trends in otolith composition of juvenile Atlantic cod (Gadus morhua).Crossref | GoogleScholarGoogle Scholar |

Storm-Suke, A., Dempson, J. B., Reist, J. D., and Power, M. (2007). A field-derived oxygen isotope fractionation equation for Salvelinus species. Rapid Communications in Mass Spectrometry 21, 4109–4116.
A field-derived oxygen isotope fractionation equation for Salvelinus species.Crossref | GoogleScholarGoogle Scholar | 18022960PubMed |

Sturrock, A. M., Trueman, C. N., Milton, J. A., Waring, C. P., Cooper, M. J., and Hunter, E. (2014). Physiological influences can outweigh environmental signals in otolith microchemistry research. Marine Ecology Progress Series 500, 245–264.
Physiological influences can outweigh environmental signals in otolith microchemistry research.Crossref | GoogleScholarGoogle Scholar |

Sturrock, A. M., Hunter, E., Milton, J. A., Johnson, R. C., Waring, C. P., and Trueman, C. N. (2015). Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution 6, 806–816.
Quantifying physiological influences on otolith microchemistry.Crossref | GoogleScholarGoogle Scholar |

Tagliabracci, V. S., Engel, J. L., Wen, J., Wiley, S. E., Worby, C. A., Kinch, L. N., Xiao, J., Grishin, N. V., and Dixon, J. E. (2012). Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science 336, 1150–1153.
Secreted kinase phosphorylates extracellular proteins that regulate biomineralization.Crossref | GoogleScholarGoogle Scholar | 22582013PubMed |

Tagliabue, A., and Bopp, L. (2008). Towards understanding global variability in ocean carbon-13. Global Biogeochemical Cycles 22, GB1025.
Towards understanding global variability in ocean carbon-13.Crossref | GoogleScholarGoogle Scholar |

Tanner, S. E., Reis-Santos, P., Vasconcelos, R. P., Fonseca, V. F., França, S., Cabral, H. N., and Thorrold, S. R. (2013). Does otolith geochemistry record ambient environmental conditions in a temperate tidal estuary? Journal of Experimental Marine Biology and Ecology 441, 7–15.
Does otolith geochemistry record ambient environmental conditions in a temperate tidal estuary?Crossref | GoogleScholarGoogle Scholar |

Thomas, O. R. B., and Swearer, S. E. (2019). Otolith Biochemistry. A review. Reviews in Fisheries Science & Aquaculture 27, 458–489.
Otolith Biochemistry. A review.Crossref | GoogleScholarGoogle Scholar |

Thomas, O. R., Ganio, K., Roberts, B. R., and Swearer, S. E. (2017). Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry. Metallomics 9, 239–249.
Trace element–protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry.Crossref | GoogleScholarGoogle Scholar | 28091665PubMed |

Thomas, O. R. B., Swearer, S. E., Kapp, E. A., Peng, P., Tonkin-Hill, G. Q., Papenfuss, A., Roberts, A., Bernard, P., and Roberts, B. R. (2019). The inner ear proteome of fish. The FEBS Journal 286, 66–81.
The inner ear proteome of fish.Crossref | GoogleScholarGoogle Scholar |

Thomas, O. R. B., Thomas, K. V., Jenkins, G. P., and Swearer, S. E. (2020). Spatio-temporal resolution of spawning and larval nursery habitats using otolith microchemistry is element dependent. Marine Ecology Progress Series 636, 169–187.
Spatio-temporal resolution of spawning and larval nursery habitats using otolith microchemistry is element dependent.Crossref | GoogleScholarGoogle Scholar |

Thorrold, S. R., and Swearer, S. E. (2009). Otolith chemistry. In ‘Tropical Fish Otoliths: Information for Assessment, Management and Ecology’. (Eds B. S. Green, B. D. Mapstone, G. Carlos, and G. A. Begg.) pp. 249–295. (Springer: Dordrecht, Netherlands.)

Thorrold, S. R., Campana, S. E., Jones, C. M., and Swart, P. K. (1997). Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 61, 2909–2919.
Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish.Crossref | GoogleScholarGoogle Scholar |

Tohse, H., and Mugiya, Y. (2008). Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations. Aquatic Biology 1, 259–268.
Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations.Crossref | GoogleScholarGoogle Scholar |

Trueman, C. N., Chung, M.-T., and Shores, D. (2016). Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study. Philosophical Transactions of the Royal Society B: Biological Sciences 371, 20150223.
Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study.Crossref | GoogleScholarGoogle Scholar |

Walsh, C. T., and Gillanders, B. M. (2018). Extrinsic factors affecting otolith chemistry: implications for interpreting migration patterns in a diadromous fish. Environmental Biology of Fishes 101, 905–916.
Extrinsic factors affecting otolith chemistry: implications for interpreting migration patterns in a diadromous fish.Crossref | GoogleScholarGoogle Scholar |

Walther, B. D., and Thorrold, S. R. (2006). Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series 311, 125–130.
Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish.Crossref | GoogleScholarGoogle Scholar |

Walther, B. D., Kingsford, M. J., O’Callaghan, M. D., and McCulloch, M. T. (2010). Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish. Environmental Biology of Fishes 89, 441–451.
Interactive effects of ontogeny, food ration and temperature on elemental incorporation in otoliths of a coral reef fish.Crossref | GoogleScholarGoogle Scholar |

Watanabe, T., Kiron, V., and Satoh, S. (1997). Trace minerals in fish nutrition. Aquaculture 151, 185–207.
Trace minerals in fish nutrition.Crossref | GoogleScholarGoogle Scholar |

Webb, S. D., Woodcock, S. H., and Gillanders, B. M. (2012). Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature. Marine Ecology Progress Series 453, 189–199.
Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature.Crossref | GoogleScholarGoogle Scholar |

West, C. F., Wischniowski, S., and Johnston, C. (2012). Pacific cod (Gadus macrocephalus) as a paleothermometer: otolith oxygen isotope reconstruction. Journal of Archaeological Science 39, 3277–3283.
Pacific cod (Gadus macrocephalus) as a paleothermometer: otolith oxygen isotope reconstruction.Crossref | GoogleScholarGoogle Scholar |

Woodcock, S. H., Munro, A. R., Crook, D. A., and Gillanders, B. M. (2012). Incorporation of magnesium into fish otoliths: determining contribution from water and diet. Geochimica et Cosmochimica Acta 94, 12–21.
Incorporation of magnesium into fish otoliths: determining contribution from water and diet.Crossref | GoogleScholarGoogle Scholar |

Woodson, L. E., Wells, B. K., Grimes, C. B., Franks, R. P., Santora, J. A., and Carr, M. H. (2013). Water and otolith chemistry identify exposure of juvenile rockfish to upwelled waters in an open coastal system. Marine Ecology Progress Series 473, 261–273.
Water and otolith chemistry identify exposure of juvenile rockfish to upwelled waters in an open coastal system.Crossref | GoogleScholarGoogle Scholar |

Zimmerman, C. E. (2005). Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids. Canadian Journal of Fisheries and Aquatic Sciences 62, 88–97.
Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids.Crossref | GoogleScholarGoogle Scholar |

Zuur, A., Ieno, E., Walker, N., Saveliev, A., and Smith, G. (2009). ‘Mixed Effects Models and Extensions in Ecology with R.’ (Springer: New York, NY, USA.)