Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Mouse testicular transcriptome after modulation of non-canonical oestrogen receptor activity

M. Duliban https://orcid.org/0000-0002-0677-060X A D * , A. Gurgul B * , T. Szmatola B , P. Pawlicki A , A. Milon A , Z. J. Arent B , P. Grzmil C , M. Kotula-Balak B and B. Bilinska A
+ Author Affiliations
- Author Affiliations

A Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland.

B University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.

C Department of Genetics and Evolution Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland.

D Corresponding author. Email: michal.duliban@doctoral.uj.edu.pl

Reproduction, Fertility and Development 32(10) 903-913 https://doi.org/10.1071/RD20025
Submitted: 24 January 2020  Accepted: 8 May 2020   Published: 11 June 2020

Abstract

The aims of this study were to shed light on the role of G-protein-coupled membrane oestrogen receptor (GPER) and oestrogen-related receptor (ERR) in mouse testis function at the gene expression level, as well as the involvement of GPER and ERR in cellular and molecular processes. Male mice were injected (50 µg kg−1,s.c.) with the GPER antagonist G-15, the ERRα inverse agonist XCT 790 or the ERRβ/ERRγ agonist DY131. Next-generation sequencing (RNA-Seq) was used to evaluate gene expression. Bioinformatic analysis of read abundance revealed that 50, 86 and 171 transcripts were differentially expressed in the G-15-, XCT 790- and DY131-treated groups respectively compared with the control group. Annotated genes and their protein products were categorised regarding their associated biological processes and molecular functions. In the XCT 790-treated group, genes involved in immunological processes were upregulated. In the DY131-treated group, genes with increased expression were primarily engaged in protein modification (protein folding and small protein conjugation). In addition, the expression of genes recognised as oncogenes, such as BMI1 proto-oncogene, polycomb ring finger (Bmi1) and nucleophosphin 1 (Npm1), was significantly increased in all experimental groups. This study provides detailed information regarding the genetic changes in the testicular transcriptome of the mouse in response to modulation of non-canonical oestrogen receptor activity.

Graphical Abstract Image

Additional keywords: G-protein-coupled oestrogen receptor, next-generation sequencing, oestrogen-related receptor, testis.


References

Abney, T. O. (1999). The potential roles of estrogens in regulating Leydig cell development and function: a review. Steroids 64, 610–617.
The potential roles of estrogens in regulating Leydig cell development and function: a review.Crossref | GoogleScholarGoogle Scholar | 10503717PubMed |

Amory, J. K., and Bremner, W. (2001). Endocrine regulation of testicular function in men: implications for contraceptive development. Mol. Cell. Endocrinol. 182, 175–179.
Endocrine regulation of testicular function in men: implications for contraceptive development.Crossref | GoogleScholarGoogle Scholar | 11514052PubMed |

Arany, Z. (2008). PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr. Opin. Genet. Dev. 18, 426–434.
PGC-1 coactivators and skeletal muscle adaptations in health and disease.Crossref | GoogleScholarGoogle Scholar | 18782618PubMed |

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300.
Controlling the false discovery rate: a practical and powerful approach to multiple testing.Crossref | GoogleScholarGoogle Scholar |

Bookout, A. L., Jeong, Y., Downes, M., Yu, R. T., Evans, R. M., and Mangelsdorf, D. J. (2006). Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126, 789–799.
Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network.Crossref | GoogleScholarGoogle Scholar | 16923397PubMed |

Cantó, C., Jiang, L. Q., Deshmukh, A. S., Mataki, C., Coste, A., Lagouge, M., Zierath, J. R., and Auwerx, J. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213–219.
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 20197054PubMed |

Carouge, D., Blanc, V., Knoblaugh, S. E., Hunter, R. J., Davidson, N. O., and Nadeau, J. H. (2016). Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc. Natl Acad. Sci. USA 113, E5425–E5433.
Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias.Crossref | GoogleScholarGoogle Scholar | 27582469PubMed |

Chaveroux, C., Eichner, L. J., Dufour, C. R., Shatnawi, A., Khoutorsky, A., Bourque, G., Sonenberg, N., and Giguère, V. (2013). Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell Metab. 17, 586–598.
Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver.Crossref | GoogleScholarGoogle Scholar | 23562079PubMed |

Chen, B., Chen, D., Jiang, Z., Li, J., Liu, S., Dong, Y., Yao, W., Akingbemi, B., Ge, R., and Li, X. (2014). Effects of estradiol and methoxychlor on Leydig cell regeneration in the adult rat testis. Int. J. Mol. Sci. 15, 7812–7826.
Effects of estradiol and methoxychlor on Leydig cell regeneration in the adult rat testis.Crossref | GoogleScholarGoogle Scholar | 24806340PubMed |

Chen, S., He, H., Wang, Y., Liu, L., Liu, Y., You, H., Dong, Y., and Lyu, J. (2018). Poor prognosis of nucleophosmin overexpression in solid tumors: a meta-analysis. BMC Cancer 18, 838.
Poor prognosis of nucleophosmin overexpression in solid tumors: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 30126359PubMed |

Chimento, A., Sirianni, R., Zolea, F., Bois, C., Delalande, C., Ando, S., Maggiolini, M., Aquila, S., Carreau, S., and Pezzi, V. (2011). GPER and ESRs are expressed in rat round spermatids and mediate oestrogen-dependent rapid pathways modulating expression of cyclin B1 and Bax. Int. J. Androl. 34, 420–429.
GPER and ESRs are expressed in rat round spermatids and mediate oestrogen-dependent rapid pathways modulating expression of cyclin B1 and Bax.Crossref | GoogleScholarGoogle Scholar | 20969598PubMed |

Chimento, A., Sirianni, R., Casaburi, I., and Pezzi, V. (2014). GPER signaling in spermatogenesis and testicular tumors. Front. Endocrinol. (Lausanne) 5, 30.
GPER signaling in spermatogenesis and testicular tumors.Crossref | GoogleScholarGoogle Scholar | 24639669PubMed |

Chiu, R., Boyle, W. J., Meek, J., Smeal, T., Hunter, T., and Karin, M. (1988). The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54, 541–552.
The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes.Crossref | GoogleScholarGoogle Scholar | 3135940PubMed |

Coward, P., Lee, D., Hull, M. V., and Lehmann, J. M. (2001). 4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor gamma. Proc. Natl Acad. Sci. USA 98, 8880–8884.
4-Hydroxytamoxifen binds to and deactivates the estrogen-related receptor gamma.Crossref | GoogleScholarGoogle Scholar | 11447273PubMed |

Dai, X., Zhang, Q., Yu, Z., Sun, W., Wang, R., and Miao, D. (2018). Bmi1 deficient mice exhibit male infertility. Int. J. Biol. Sci. 14, 358–368.
Bmi1 deficient mice exhibit male infertility.Crossref | GoogleScholarGoogle Scholar | 29559852PubMed |

Fietz, D., Bergmann, M., and Hartmann, K. (2016). In situ hybridization of estrogen receptors α and β and GPER in the human testis. Methods Mol. Biol. 1366, 189–205.
In situ hybridization of estrogen receptors α and β and GPER in the human testis.Crossref | GoogleScholarGoogle Scholar | 26585136PubMed |

Grisendi, S., Bernardi, R., Rossi, M., Cheng, K., Khandker, L., Manova, K., and Pandolfi, P. P. (2005). Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437, 147–153.
Role of nucleophosmin in embryonic development and tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 16007073PubMed |

Haindl, M., Harasim, T., Eick, D., and Muller, S. (2008). The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep. 9, 273–279.
The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing.Crossref | GoogleScholarGoogle Scholar | 18259216PubMed |

Haupt, Y., Alexander, W. S., Barri, G., Klinken, S. P., and Adams, J. M. (1991). Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65, 753–763.
Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1904009PubMed |

Hedger, M. P. (2012). Immune privilege of the testis: meaning, mechanisms, and manifestations in infection. In ‘Immune Homeostasis and Immune Privilege’. (Ed. J. Stein-Streilein.) pp. 31–52. (Springer: Basel.)

Herrera, D. G., and Robertson, H. A. (1996). Activation of c-fos in the brain. Prog. Neurobiol. 50, 83–107.
Activation of c-fos in the brain.Crossref | GoogleScholarGoogle Scholar | 8971979PubMed |

Hess, R. A. (2003). Estrogen in the adult male reproductive tract: a review. Reprod. Biol. Endocrinol. 1, 52.
Estrogen in the adult male reproductive tract: a review.Crossref | GoogleScholarGoogle Scholar | 12904263PubMed |

Hu, J. Z., Long, H., Wu, T. D., Zhou, Y., and Lu, H. B. (2015). The effect of estrogen-related receptor α on the regulation of angiogenesis after spinal cord injury. Neuroscience 290, 570–580.
| 25665753PubMed |

Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., and Farrar, W. L. (2008). CD44+ CD24(–) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 98, 756–765.
CD44+ CD24(–) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis.Crossref | GoogleScholarGoogle Scholar | 18268494PubMed |

Huss, J. M., Garbacz, W. G., and Xie, W. (2015). Constitutive activities of estrogen-related receptors: transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim. Biophys. Acta 1852, 1912–1927.
Constitutive activities of estrogen-related receptors: transcriptional regulation of metabolism by the ERR pathways in health and disease.Crossref | GoogleScholarGoogle Scholar | 26115970PubMed |

Johnson, E. S. (2004). Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.
Protein modification by SUMO.Crossref | GoogleScholarGoogle Scholar | 15189146PubMed |

Kaur, G., and Dufour, J. M. (2013). Testis immune privilege – assumptions versus facts. Anim. Reprod. 10, 3–15.
| 25309630PubMed |

Kessler, B. M., and Edelmann, M. J. (2011). PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Cell Biochem. Biophys. 60, 21–38.
PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications.Crossref | GoogleScholarGoogle Scholar | 21480003PubMed |

Khan, D., and Ansar Ahmed, S. (2015). The immune system is a natural target for estrogen action: opposing effects of estrogen in two prototypical autoimmune diseases. Front. Immunol. 6, 635.
| 26779182PubMed |

Kotula-Balak, M., Milon, A., Pawlicki, P., Opydo-Chanek, M., Pacwa, A., Lesniak, K., Sekula, M., Zarzycka, M., Bubka, M., Tworzydlo, W., Bilinska, B., and Hejmej, A. (2018a). Insights into the role of estrogen-related receptors α, β and γ in tumor Leydig cells. Tissue Cell 52, 78–91.
Insights into the role of estrogen-related receptors α, β and γ in tumor Leydig cells.Crossref | GoogleScholarGoogle Scholar | 29857832PubMed |

Kotula-Balak, M., Pawlicki, P., Milon, A., Tworzydlo, W., Sekula, M., Pacwa, A., Gorowska-Wojtowicz, E., Bilinska, B., Pawlicka, B., Wiater, J., Zarzycka, M., and Galas, J. (2018b). The role of G-protein-coupled membrane estrogen receptor in mouse Leydig cell function – in vivo and in vitro evaluation. Cell Tissue Res. 374, 389–412.
The role of G-protein-coupled membrane estrogen receptor in mouse Leydig cell function – in vivo and in vitro evaluation.Crossref | GoogleScholarGoogle Scholar | 29876633PubMed |

Kovatas, S. (2015). Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 294, 63–69.
Estrogen receptors regulate innate immune cells and signaling pathways.Crossref | GoogleScholarGoogle Scholar |

Lee, F. Y., Faivre, E. J., Suzawa, M., Lontok, E., Ebert, D., Cai, F., Belsham, D. D., and Ingraham, H. A. (2011). Eliminating SF-1 (NR5A1) SUMOylation in vivo results in ectopic Hedgehog signaling and disruption of endocrine development. Dev. Cell 21, 315–327.
Eliminating SF-1 (NR5A1) SUMOylation in vivo results in ectopic Hedgehog signaling and disruption of endocrine development.Crossref | GoogleScholarGoogle Scholar | 21820362PubMed |

Li, J., Zhang, X., Sejas, D. P., Bagby, G. C., and Pang, Q. (2004). Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J. Biol. Chem. 279, 41275–41279.
Hypoxia-induced nucleophosmin protects cell death through inhibition of p53.Crossref | GoogleScholarGoogle Scholar | 15310764PubMed |

Liao, Y., Wang, J., Jaehnig, E., Shi, Z., and Zhang, B. (2019a). WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205.
WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs.Crossref | GoogleScholarGoogle Scholar | 31114916PubMed |

Liao, Z. H., Huang, T., Xiao, J. W., Gu, R. C., Ouyang, J., Wu, G., and Liao, H. (2019b). Estrogen signaling effects on muscle-specific immune responses through controlling the recruitment and function of macrophages and T cells. Skelet. Muscle 9, 20.
Estrogen signaling effects on muscle-specific immune responses through controlling the recruitment and function of macrophages and T cells.Crossref | GoogleScholarGoogle Scholar | 31358063PubMed |

Lucas, T. F., Pimenta, M. T., Pisolato, R., Lazari, M. F., and Porto, C. S. (2011). 17β-Estradiol signaling and regulation of Sertoli cell function. Spermatogenesis 1, 318–324.
17β-Estradiol signaling and regulation of Sertoli cell function.Crossref | GoogleScholarGoogle Scholar | 22332115PubMed |

Lukacs, R. U., Memarzadeh, S., Wu, H., and Witte, O. N. (2010). Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7, 682–693.
Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation.Crossref | GoogleScholarGoogle Scholar | 21112563PubMed |

Masiuk, M., Lewandowska, M., Teresinski, L., Dobak, E. D., and Urasinska, E. (2019). Nucleolin and nucleophosmin expression in seminomas and non-seminomatous testicular tumors. Folia Histochem. Cytobiol. 57, 139–145.
| 31513277PubMed |

Matsushima, A., Kakuta, Y., Teramoto, T., Koshiba, T., Liu, X., Okada, H., Tokunaga, T., Kawabata, S., Kimura, M., and Shimohigashi, Y. (2007). Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma. J. Biochem. 142, 517–524.
Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma.Crossref | GoogleScholarGoogle Scholar | 17761695PubMed |

Metsalu, T., and Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566–W570.
ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap.Crossref | GoogleScholarGoogle Scholar | 25969447PubMed |

Milde-Langosch, K. (2005). The Fos family of transcription factors and their role in tumourigenesis. Eur. J. Cancer 41, 2449–2461.
The Fos family of transcription factors and their role in tumourigenesis.Crossref | GoogleScholarGoogle Scholar | 16199154PubMed |

Milon, A., Pawlicki, P., Rak, A., Mlyczynska, E., Płachno, B. J., Tworzydlo, W., Gorowska-Wojtowicz, E., Bilinska, B., and Kotula-Balak, M. (2019). Telocytes are localized to testis of the bank vole (Myodes glareolus) and are affected by lighting conditions and G-coupled membrane estrogen receptor (GPER) signaling. Gen. Comp. Endocrinol. 271, 39–48.
Telocytes are localized to testis of the bank vole (Myodes glareolus) and are affected by lighting conditions and G-coupled membrane estrogen receptor (GPER) signaling.Crossref | GoogleScholarGoogle Scholar | 30391242PubMed | 30391242PubMed |

Nanjappa, M. K., Simon, L., and Akingbemi, B. T. (2012). The industrial chemical bisphenol A (BPA) interferes with proliferative activity and development of steroidogenic capacity in rat Leydig cells. Biol. Reprod. 86, 135.
The industrial chemical bisphenol A (BPA) interferes with proliferative activity and development of steroidogenic capacity in rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 22302688PubMed | 22302688PubMed |

Pardyak, L., Kaminska, A., Galas, J., Ptak, A., Bilinska, B., and Kotula-Balak, M. (2016). Primary and tumor mouse Leydig cells exposed to polychlorinated naphthalenes mixture: effect on estrogen related-receptors expression, intracellular calcium level and sex hormones secretion. Tissue Cell 48, 432–441.
Primary and tumor mouse Leydig cells exposed to polychlorinated naphthalenes mixture: effect on estrogen related-receptors expression, intracellular calcium level and sex hormones secretion.Crossref | GoogleScholarGoogle Scholar | 27590779PubMed | 27590779PubMed |

Park, E., Kumar, S., Lee, B., Kim, K. J., Seo, J. E., Choi, H. S., and Lee, K. (2017). Estrogen receptor-related receptor γ regulates testicular steroidogenesis through direct and indirect regulation of steroidogenic gene expression. Mol. Cell. Endocrinol. 452, 15–24.
Estrogen receptor-related receptor γ regulates testicular steroidogenesis through direct and indirect regulation of steroidogenic gene expression.Crossref | GoogleScholarGoogle Scholar | 28479375PubMed | 28479375PubMed |

Pawlicki, P., Milon, A., Zarzycka, M., Galas, J., Tworzydlo, W., Kaminska, A., Pardyak, L., Lesniak, K., Pacwa, A., Bilinska, B., Gorowska-Wojtowicz, E., and Kotula-Balak, M. (2017). Does signaling of estrogen-related receptors affect structure and function of bank vole Leydig cells? J. Physiol. Pharmacol. 68, 459–476.
| 28820402PubMed |
| 28820402PubMed |

Pawlicki, P., Hejmej, A., Milon, A., Lustofin, K., Płachno, B. J., Tworzydlo, W., Gorowska-Wojtowicz, E., Pawlicka, B., Kotula-Balak, M., and Bilinska, B. (2019). Telocytes in the mouse testicular interstitium: implications of G-protein-coupled estrogen receptor (GPER) and estrogen-related receptor (ERR) in the regulation of mouse testicular interstitial cells. Protoplasma 256, 393–408.
Telocytes in the mouse testicular interstitium: implications of G-protein-coupled estrogen receptor (GPER) and estrogen-related receptor (ERR) in the regulation of mouse testicular interstitial cells.Crossref | GoogleScholarGoogle Scholar | 30187340PubMed | 30187340PubMed |

Pertea, M., Kim, D., Pertea, G., Leek, J. T., and Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667.
Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.Crossref | GoogleScholarGoogle Scholar | 27560171PubMed | 27560171PubMed |

Pomaznoy, M., Ha, B., and Peters, B. (2018). GOnet: a tool for interactive gene ontology analysis. BMC Bioinformatics 19, 470.
GOnet: a tool for interactive gene ontology analysis.Crossref | GoogleScholarGoogle Scholar | 30526489PubMed | 30526489PubMed |

Prossnitz, E. R., and Hathaway, H. J. (2015). What have we learned about GPER function in physiology and disease from knockout mice? J. Steroid Biochem. Mol. Biol. 153, 114–126.
What have we learned about GPER function in physiology and disease from knockout mice?Crossref | GoogleScholarGoogle Scholar | 26189910PubMed | 26189910PubMed |

Prossnitz, E. R., and Maggiolini, M. (2009). Non-genomic signaling by steroids. Mol. Cell. Endocrinol. 308, 1–2.
Non-genomic signaling by steroids.Crossref | GoogleScholarGoogle Scholar | 19389460PubMed | 19389460PubMed |

Prossnitz, E. R., Arterburn, J. B., Smith, H. O., Oprea, T. I., Sklar, L. A., and Hathaway, H. J. (2008). Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu. Rev. Physiol. 70, 165–190.
Estrogen signaling through the transmembrane G protein-coupled receptor GPR30.Crossref | GoogleScholarGoogle Scholar | 18271749PubMed | 18271749PubMed |

Rangari, K., and Shrivastav, T. G. (2013). Association of immunological factors in male infertility with seminal hormone. Health Popul. Perspect. Issues 36, 57–65.

Saito, K., and Cui, H. (2018). Emerging roles of estrogen-related receptors in the brain: potential interactions with estrogen signaling. Int. J. Mol. Sci. 19, 1091.
Emerging roles of estrogen-related receptors in the brain: potential interactions with estrogen signaling.Crossref | GoogleScholarGoogle Scholar |

Sandner, F., Welter, H., Schwarzer, J. U., Köhn, F. M., Urbanski, H. F., and Mayerhofer, A. (2014). Expression of the oestrogen receptor GPER by testicular peritubular cells is linked to sexual maturation and male fertility. Andrology 2, 695–701.
Expression of the oestrogen receptor GPER by testicular peritubular cells is linked to sexual maturation and male fertility.Crossref | GoogleScholarGoogle Scholar | 25052196PubMed | 25052196PubMed |

Sangkhae, V., and Nemeth, E. (2017). Regulation of the iron homeostatic hormone hepcidin. Adv. Nutr. 8, 126–136.
Regulation of the iron homeostatic hormone hepcidin.Crossref | GoogleScholarGoogle Scholar | 28096133PubMed | 28096133PubMed |

Schmidt-Zachmann, M. S., Hügle-Dörr, B., and Franke, W. W. (1987). A constitutive nucleolar protein identified as a member of the nucleoplasmin family. EMBO J. 6, 1881–1890.
A constitutive nucleolar protein identified as a member of the nucleoplasmin family.Crossref | GoogleScholarGoogle Scholar | 3308448PubMed | 3308448PubMed |

Seeler, J.-S., and Dejean, A. (2017). SUMO and the robustness of cancer. Nat. Rev. Cancer 17, 184–197.
SUMO and the robustness of cancer.Crossref | GoogleScholarGoogle Scholar | 28134258PubMed | 28134258PubMed |

Sharma, G., and Prossnitz, E. R. (2016). GPER/GPR30 knockout mice: effects of GPER on metabolism. Methods Mol. Biol. 1366, 489–502.
GPER/GPR30 knockout mice: effects of GPER on metabolism.Crossref | GoogleScholarGoogle Scholar | 26585159PubMed | 26585159PubMed |

Shi, Z., Chen, J., Zhang, X., Chu, J., Han, Z., Xu, D., Gan, S., Pan, X., Ye, J., and Cui, X. (2018). Ataxin-3 promotes testicular cancer cell proliferation by inhibiting anti-oncogene PTEN. Biochem. Biophys. Res. Commun. 503, 391–396.
Ataxin-3 promotes testicular cancer cell proliferation by inhibiting anti-oncogene PTEN.Crossref | GoogleScholarGoogle Scholar | 29902454PubMed | 29902454PubMed |

Shrivastava, V., Pekar, M., Grosser, E., Im, J., and Vigodner, M. (2010). SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells. Reproduction 139, 999–1010.
SUMO proteins are involved in the stress response during spermatogenesis and are localized to DNA double-strand breaks in germ cells.Crossref | GoogleScholarGoogle Scholar | 20385780PubMed | 20385780PubMed |

Sirianni, R., Chimento, A., Ruggiero, C., De Luca, A., Lappano, R., Ando, S., Maggiolini, M., and Pezzi, V. (2008). The novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects induced by 17beta-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology 149, 5043–5051.
The novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects induced by 17beta-estradiol on mouse spermatogonial GC-1 cell line.Crossref | GoogleScholarGoogle Scholar | 18566133PubMed | 18566133PubMed |

Sonoda, J., Laganière, J., Mehl, I. R., Barish, G. D., Chong, L. W., Li, X., Scheffler, I. E., Mock, D. C., Bataille, A. R., Robert, F., Lee, C. H., Giguère, V., and Evans, R. M. (2007). Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes Dev. 21, 1909–1920.
Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense.Crossref | GoogleScholarGoogle Scholar | 17671090PubMed | 17671090PubMed |

Sriraman, V., Anbalagan, M., and Rao, A. J. (2005). Hormonal regulation of Leydig cell proliferation and differentiation in rodent testis: a dynamic interplay between gonadotrophins and testicular factors. Reprod. Biomed. Online 11, 507–518.
Hormonal regulation of Leydig cell proliferation and differentiation in rodent testis: a dynamic interplay between gonadotrophins and testicular factors.Crossref | GoogleScholarGoogle Scholar | 16274617PubMed | 16274617PubMed |

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515.
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Crossref | GoogleScholarGoogle Scholar | 20436464PubMed | 20436464PubMed |

Tremblay, A. M., Wilson, B. J., Yang, X. J., and Giguère, V. (2008). Phosphorylation-dependent SUMOylation regulates estrogen-related receptor-alpha and -gamma transcriptional activity through a synergy control motif. Mol. Endocrinol. 22, 570–584.
Phosphorylation-dependent SUMOylation regulates estrogen-related receptor-alpha and -gamma transcriptional activity through a synergy control motif.Crossref | GoogleScholarGoogle Scholar | 18063693PubMed | 18063693PubMed |

Vanacker, J. M., Bonnelye, E., Delmarre, C., and Laudet, V. (1998). Activation of the thyroid hormone receptor alpha gene promoter by the orphan nuclear receptor ERR alpha. Oncogene 17, 2429–2435.
Activation of the thyroid hormone receptor alpha gene promoter by the orphan nuclear receptor ERR alpha.Crossref | GoogleScholarGoogle Scholar | 9824153PubMed | 9824153PubMed |

Vanacker, J. M., Pettersson, K., Gustafsson, J. A., and Laudet, V. (1999). Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta. EMBO J. 18, 4270–4279.
Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta.Crossref | GoogleScholarGoogle Scholar | 10428965PubMed | 10428965PubMed |

Vigodner, M., Ishikawa, T., Schlegel, P. N., and Morris, P. L. (2006). SUMO-1, human male germ cell development, and the androgen receptor in the testis of men with normal and abnormal spermatogenesis. Am. J. Physiol. Endocrinol. Metab. 290, E1022–E1033.
SUMO-1, human male germ cell development, and the androgen receptor in the testis of men with normal and abnormal spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 16352666PubMed | 16352666PubMed |

Vigodner, M., Shrivastava, V., Gutstein, L. E., Schneider, J., Nieves, E., Goldstein, M., Feliciano, M., and Callaway, M. (2013). Localization and identification of sumoylated proteins in human sperm: excessive SUMOylation is a marker of defective spermatozoa. Hum. Reprod. 28, 210–223.
Localization and identification of sumoylated proteins in human sperm: excessive SUMOylation is a marker of defective spermatozoa.Crossref | GoogleScholarGoogle Scholar | 23077236PubMed | 23077236PubMed |

Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G. D., and Morris, Q. (2010). The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220.
The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.Crossref | GoogleScholarGoogle Scholar | 20576703PubMed | 20576703PubMed |

Wei, W., Schwaid, A. G., Wang, X., Wang, X., Chen, S., Chu, Q., Saghatelian, A., and Wan, Y. (2016). Ligand activation of ERRα by cholesterol mediates statin and bisphosphonate effects. Cell Metab. 23, 479–491.
Ligand activation of ERRα by cholesterol mediates statin and bisphosphonate effects.Crossref | GoogleScholarGoogle Scholar | 26777690PubMed | 26777690PubMed |

Wu, D., Huang, C.-J., Jiao, X.-F., Ding, Z.-M., Zhang, S.-X., Miao, Y.-L., and Huo, L. J. (2019). Bisphenol AF compromises blood–testis barrier integrity and sperm quality in mice. Chemosphere 237, 124410.
Bisphenol AF compromises blood–testis barrier integrity and sperm quality in mice.Crossref | GoogleScholarGoogle Scholar | 31362132PubMed | 31362132PubMed |

Yang, Y., He, Y., Wang, X., Liang, Z., He, G., Zhang, P., Zhu, H., Xu, N., and Liang, S. (2017). Protein SUMOylation modification and its associations with disease. Open Biol. 7, 170167.
Protein SUMOylation modification and its associations with disease.Crossref | GoogleScholarGoogle Scholar | 29021212PubMed | 29021212PubMed |

Yu, D. D., and Forman, B. M. (2005). Identification of an agonist ligand for estrogen-related receptors ERRbeta/gamma. Bioorg. Med. Chem. Lett. 15, 1311–1313.
| 15713377PubMed |
| 15713377PubMed |

Zarzycka, M., Gorowska-Wojtowicz, E., Tworzydlo, W., Klak, A., Kozub, K., Hejmej, A., Bilinska, B., and Kotula-Balak, M. (2016). Are aryl hydrocarbon receptor and G-protein-coupled receptor 30 involved in the regulation of seasonal testis activity in photosensitive rodent-the bank vole (Myodes glareolus)? Theriogenology 86, 674–686.e1.
Are aryl hydrocarbon receptor and G-protein-coupled receptor 30 involved in the regulation of seasonal testis activity in photosensitive rodent-the bank vole (Myodes glareolus)?Crossref | GoogleScholarGoogle Scholar | 27004452PubMed |