Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Using non-systematically collected data to evaluate the conservation status of elusive species: a case study on Australia’s Oenpelli python

Graeme R. Gillespie https://orcid.org/0000-0001-9727-8436 A B C , Yusuke Fukuda https://orcid.org/0000-0002-8675-318X A and Peter McDonald A
+ Author Affiliations
- Author Affiliations

A Flora and Fauna Division, Northern Territory Department of Environment and Natural Resources, PO Box 496, Palmerston, NT 0831, Australia.

B School of BioSciences, The University of Melbourne, Royal Parade, Parkville, Vic. 3010, Australia.

C Corresponding author. Email: Graeme.Gillespie@nt.gov.au

Wildlife Research 47(2) 146-157 https://doi.org/10.1071/WR19112
Submitted: 5 July 2019  Accepted: 11 October 2019   Published: 21 February 2020

Abstract

Context: Species conservation assessments require information on distribution, habitat requirements and population demography and trends. Uncertain conservation assessments limit effective planning and may lead to poor management decisions. Top-order predators generally receive considerable attention from ecologists and conservation biologists, with the notable exception of large pythons and boas. They are typically elusive and have low population densities, posing challenges for ecological research and monitoring. Ecological and demographic data are lacking for most large snake species and are generally inadequate to properly assess conservation status or to evaluate their broader ecological roles. The Oenpelli python (Simalia oenpelliensis) is Australia’s second-longest snake species, but remains one of the least-known of the world’s pythons.

Aims: We sought to use non-systematically collected data from multiple sources to evaluate Oenpelli python population trends and habitat associations, and to assess its conservation status.

Methods: We identified a priori biases in data and evaluated their influences on environmental models and temporal variability in reporting patterns. We then used these findings to assess the conservation status of this species, identify knowledge gaps, and refine future survey and monitoring methods.

Key results: Oenpelli python records were strongly associated with monsoon rainforest, sandstone outcrops and perennial streams, irrespective of detection biases. Total area of occupancy was estimated to be 19 252 km2. Detection patterns were strongly seasonal and associated with periods of low rainfall and low moonlight, informing better-targeted survey and monitoring methods with improved sensitivity.

Conclusions: Oenpelli pythons have a highly fragmented distribution owing to their strong association with monsoon rainforest. This habitat is likely to provide more food resources and refuge from high temperatures than are the surrounding savanna woodlands. Detection probability should improve by surveying Oenpelli pythons in September on moonless nights and following periods of high rainfall. Taking a precautionary approach, the Oenpelli python qualifies as Vulnerable under IUCN criteria, supporting its current Red List and Northern Territory Government status.

Implications: Non-systematically collected data on poorly known species can be used to improve conservation assessments where there may otherwise be high uncertainty. The present study also highlighted the paucity of ecological knowledge of large iconic snake species globally.

Additional keywords: apex predator, conservation assessment, cryptic species, distribution modelling, species trends.


References

Australian Government Bureau of Meteorology (BOM) (2018). Available at www.bom.gov.au [verified 1 February 2019].

Barker, D. G., and Barker, T. M. (1994). ‘Pythons of the World. Vol. 1. Australia.’ (Advanced Vivarium Systems: Lakeside, CA, USA.)

Begg, R. J., and Martin, K. (1980). Capture of a further specimen of Python oenpelliensis. Herpetofauna 11, 11.

Berger, K. M., and Conner, M. M. (2008). Recolonizing wolves and mesopredator suppression of coyotes: impacts on pronghorn population dynamics. Ecological Applications 18, 599–612.
Recolonizing wolves and mesopredator suppression of coyotes: impacts on pronghorn population dynamics.Crossref | GoogleScholarGoogle Scholar | 18488620PubMed |

Bowman, D. M., and Dingle, J. K. (2006). Late 20th century landscape-wide expansion of Allosyncarpia ternata (Myrtaceae) forests in Kakadu National Park, northern Australia. Australian Journal of Botany 54, 707–715.
Late 20th century landscape-wide expansion of Allosyncarpia ternata (Myrtaceae) forests in Kakadu National Park, northern Australia.Crossref | GoogleScholarGoogle Scholar |

Braithwaite, R. W. (1985). ‘The Kakadu Fauna Survey: an Ecological Survey of Kakadu National Park.’ (CSIRO: Darwin, NT, Australia.)

Brown, G. P., and Shine, R. (2002). Influence of weather conditions on activity of tropical snakes. Austral Ecology 27, 596–605.
Influence of weather conditions on activity of tropical snakes.Crossref | GoogleScholarGoogle Scholar |

Bryant, G. L., Dundas, S. L., and Flemming, P. A. (2012). Tree hollows are of conservation importance for a near‐threatened python species. Journal of Zoology 286, 81–92.
Tree hollows are of conservation importance for a near‐threatened python species.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-theoretic Approach.’ 2nd edn. (Springer-Verlag: New York, NY, USA.)

Burrough, P. A., and McDonell, R. A. (1998). ‘Principles of Geographical Information Systems.’ (Oxford University Press: New York, NY, USA.)

Caughley, G., and Gunn, A. (1996). ‘Conservation Biology in Theory and Practice.’ (Blackwell Science: Malden, MA, USA.)

Charles, N., and Wilson, P. (1985). A caesarean operation on an Oenpelli python. Thylacinus 10, 8–12.

Charles, N., Field, R., and Shine, R. (1985). Notes on the reproductive biology of Australian pythons, genera Aspidites, Liasis and Morelia. Herpetological Review 16, 45–48.

Cogger, H. G. (2015). ‘Reptiles and Amphibians of Australia.’ 7th edn. (CSIRO: Melbourne, Vic., Australia.)

Crawley, M. J. (2005). ‘Statistics: an Introduction using R.’ (John Wiley & Sons, Inc.: Chichester, West Sussex, UK.)

Department of Environment (2015). ‘The Australian Government’s Threatened Species Strategy.’ Available at https://www.environment.gov.au/biodiversity/threatened/publications/strategy-home [verified 26 June 2019].

Department of Sustainability, Environment, Water, Population and Communities (2012). ‘National Vegetation Information System (NVIS). Version 4.1.’ (Australian Government Department of Sustainability, Environment, Water, Population and Communities: Canberra, ACT, Australia.) Available at https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system [verified 3 February 2019].

Doherty, T. S., Davis, R. A., Etten, E. J. B., Algar, D., Collier, N., Dickman, C. R., Edwards, G., Masters, P., Palmer, R., and Robinson, S. (2015). A continental-scale analysis of feral cat diet in Australia. Journal of Biogeography 42, 964–975.
A continental-scale analysis of feral cat diet in Australia.Crossref | GoogleScholarGoogle Scholar |

Dorcas, M. E., Wilson, J. D., Reed, R. N., Snow, R. W., Rochford, M. R., Miller, M. A., Meshaka, W. E., Andreadis, P. T., Mazzotti, F. J., Romagosa, C. M., and Hart, K. M. (2012). Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proceedings of the National Academy of Sciences, USA 109, 2418–2422.
Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park.Crossref | GoogleScholarGoogle Scholar |

Duffy, J. E. (2003). Biodiversity loss, trophic skew and ecosystem functioning. Ecology Letters 6, 680–687.
Biodiversity loss, trophic skew and ecosystem functioning.Crossref | GoogleScholarGoogle Scholar |

Edwards, A. C., and Russell-Smith, J. (2009). Ecological thresholds and the status of fire-sensitive vegetation in western Arnhem Land, northern Australia: implications for management. International Journal of Wildland Fire 18, 127–146.
Ecological thresholds and the status of fire-sensitive vegetation in western Arnhem Land, northern Australia: implications for management.Crossref | GoogleScholarGoogle Scholar |

Einoder, L. D., Southwell, D. M., Gillespie, G. R., Fisher, A., Lahoz-Monfort, J. J., and Wintle, B. A. (2018). Optimising broad-scale monitoring for trend detection: review and re-design of a long-term program in northern Australia. In ‘Monitoring Threatened Species and Ecological Communities’. (Eds S. Legge, D. B. Lindenmayer, N. M. Robinson, B. C. Scheele, D. M. Southwell, and B. A. Wintle.) pp. 269–278. (CSIRO Publishing: Melbourne, Vic., Australia.)

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., and Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity & Distributions 17, 43–57.
A statistical explanation of MaxEnt for ecologists.Crossref | GoogleScholarGoogle Scholar |

Evans, J. S., Oakleaf, J., Cushman, S. A., and Theobald, D. (2014). ‘An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, Version 2.0-0.’ Available at http://evansmurphy.wix.com/evansspatial [verified 25 January 2019].

Fearn, S., Schwarzcopf, L., and Shine, R. (2005). Giant snakes in tropical forests: a field study of the Australian scrub python, Morelia kinghorni. Austral Ecology 32, 193–201.

Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R., and Lotze, H. K. (2010). Patterns and ecosystem consequences of shark declines in the ocean. Ecology Letters 13, 1055–1071.
| 20528897PubMed |

Freeman, A., and Freeman, A. (2009). Habitat use in a large rainforest python (Morelia kinghorni) in the wet tropics of north Queensland, Australia. Herpetological Conservation and Biology 4, 252–260.

Freeman, J., Edwards, A. C., and Russell-Smith, J. (2017). Fire-driven decline of endemic Allosyncarpia monsoon rainforests in northern Australia. Forests 8, 481.
Fire-driven decline of endemic Allosyncarpia monsoon rainforests in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Geoscience Australia (2006). ‘GEODATA TOPO 250K Series 3.’ (Geoscience Australia: Canberra, ACT, Australia.) Available at https://data.gov.au/data/dataset/a0650f18-518a-4b99-a553-44f82f28bb5f [verified 25 January 2019].

Gillespie, R. G., and Fisher, A. J. (2014). Threatened reptile species of Kakadu National Park: current status; known and potential threats; and what needs to be done for them. In ‘Threatened Species in Kakadu: Current Status and Management Priorities’. (Eds S. Winderlich, and J. Woinarski.) pp. 75–84. (Kakadu National Park Landscape Symposia Series: Darwin, NT, Australia.)

Gillespie, G. R., Scroggie, M. P., Roberts, D., Cogger, H., McDonald, K. R., and Mahony, M. J. (2011). The influence of uncertainty on conservation assessments: Australian frogs as a case study. Biological Conservation 144, 1516–1525.
The influence of uncertainty on conservation assessments: Australian frogs as a case study.Crossref | GoogleScholarGoogle Scholar |

Gow, G. (1977). A new species of Python from Arnhem Land. Australian Zoologist 19, 133–139.

Hancock, D. (2014). Saving the Oenpelli python. Australian Geographic Magazine. Available at http://www.australiangeographic.com.au/topics/wildlife/2014/07/oenpelli-python [verified 14 July 2018].

Heatwole, H., and Taylor, J. (1987). ‘Ecology of Reptiles.’ (Surrey Beatty: Sydney, NSW, Australia.)

Heithaus, M. R., Frid, A., Wirsing, A. J., and Worm, B. (2008). Predicting ecological consequences of marine top predator declines. Trends in Ecology & Evolution 23, 202–210.
Predicting ecological consequences of marine top predator declines.Crossref | GoogleScholarGoogle Scholar |

Hernandez, P. A., Graham, C. H., Master, L. L., and Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785.
The effect of sample size and species characteristics on performance of different species distribution modeling methods.Crossref | GoogleScholarGoogle Scholar |

IUCN (2017). ‘Guidelines for Using the IUCN Red List Categories and Criteria. Version 13.’ Available at http://cmsdocs.s3.amazonaws.com/RedListGuidelines.pdf www.iucnredlist.org [verified 11 January 2019].

Liu, S. F., Raymond, O. L., Stewart, A. J., Sweet, I. P., Duggan, M. B., Charlick, C., Phillips, D., and Retter, A. J. (2006). ‘Surface Geology of Australia 1 : 1 000  000 scale, Northern Territory.’ [Digital dataset] (Geoscience Australia: Canberra, ACT, Australia.)

Madsen, T., and Osterkamp, M. (1982). Notes on the biology of the fish-eating snake Lycodonomorphus bicolor in Lake Tanganyika. Journal of Herpetology 16, 185–188.
Notes on the biology of the fish-eating snake Lycodonomorphus bicolor in Lake Tanganyika.Crossref | GoogleScholarGoogle Scholar |

Madsen, T., and Shine, R. (1996). Seasonal migration of predators and prey: a study of pythons and rats in tropical Australia. Ecology 77, 149–156.
Seasonal migration of predators and prey: a study of pythons and rats in tropical Australia.Crossref | GoogleScholarGoogle Scholar |

Madsen, T., Ujvari, B., Shine, R., and Olsson, M. (2006). Rain, rats and pythons: climate‐driven population dynamics of predators and prey in tropical Australia. Austral Ecology 31, 30–37.
Rain, rats and pythons: climate‐driven population dynamics of predators and prey in tropical Australia.Crossref | GoogleScholarGoogle Scholar |

McDonald, P. J. (2012). Snakes on roads: an arid Australian perspective. Journal of Arid Environments 79, 116–119.
Snakes on roads: an arid Australian perspective.Crossref | GoogleScholarGoogle Scholar |

McDonald, P. J., Luck, G. W., Dickman, C. R., Ward, S. J., and Crowther, M. S. (2015). Using multiple‐source occurrence data to identify patterns and drivers of decline in arid‐dwelling Australian marsupials. Ecography 38, 1090–1100.
Using multiple‐source occurrence data to identify patterns and drivers of decline in arid‐dwelling Australian marsupials.Crossref | GoogleScholarGoogle Scholar |

Newbold, T. (2010). Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progress in Physical Geography 34, 3–22.
Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models.Crossref | GoogleScholarGoogle Scholar |

Pearson, D. J. (2006). Giant pythons of the Pilbara. Landscope 19, 32–39.

Peck, S. (2000). An aggregation of the Oenpelli pythons (Morelia oenpelliensis). Herpetofauna 30, 37–38.

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., and Blaire, M. E. (2017). Opening the black box: an open-source release of Maxent (Version 3.4.1). Ecography 40, 887–893.

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231–259.
Maximum entropy modeling of species geographic distributions.Crossref | GoogleScholarGoogle Scholar |

Pike, R. J., Evans, I. S., and Hengl, T. (2008). Geomorphometry: a brief guide. In ‘Geomorphometry, Concepts, Software, Applications, Developments in Soil Science’. (Eds T. Hengl, and H. I. Reuter.) Volume 33, pp. 1–28. (Elsevier: Amsterdam, Holland.)

R Core Team (2017). R: a language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna.) Available at https://www.R-project.org/ [verified 17 January 2020].

Reed, R. N., and Rodda, G. H. (2009). Giant constrictors: biological and management profiles and an establishment risk assessment for nine large species of pythons, anacondas, and the boa constrictor. US geological survey open-file report 2009-1202. USGS, Fort Collins, CO, USA.

Reed, R. N., and Shine, R. (2002). Lying in wait for extinction: ecological correlates of conservation status among Australian elapid snakes. Conservation Biology 16, 451–461.
Lying in wait for extinction: ecological correlates of conservation status among Australian elapid snakes.Crossref | GoogleScholarGoogle Scholar |

Ripple, W. J., Beschta, R. L., Fortin, J. K., and Robbins, C. T. (2014a). Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology 83, 223–233.
Trophic cascades from wolves to grizzly bears in Yellowstone.Crossref | GoogleScholarGoogle Scholar | 24033136PubMed |

Ripple, W. J., Estes, J. A., Beshta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., Schmitz, O. J., Smith, D. W., Wallach, A. D., and Wirsong, A. J. (2014b). Status and ecological effects of the world’s largest carnivores. Science 343, 1 241 484.
Status and ecological effects of the world’s largest carnivores.Crossref | GoogleScholarGoogle Scholar | 24408439PubMed |

Ritchie, E. G., Elmhagen, B., Glen, A. S., Letnic, M., Ludwig, G., and McDonald, R. A. (2012). Ecosystem restoration with teeth: what role for predators? Trends in Ecology & Evolution 27, 265–271.
Ecosystem restoration with teeth: what role for predators?Crossref | GoogleScholarGoogle Scholar |

Roll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A. M., Bernard, R., Böh, M., Castro-Herrera, F., Chirio, L., Collen, B., Colli, G. R., Dabool, L., Das, I., Doan, T. M., Grismer, L. L., Hoogmoed, M., Itescu, Y., Kraus, F., LeBreton, M., Lewin, A., Martins, M., Maza, E., Meirte, D., Nagy, Z. T., Nogueira, C. de C., Pauwels, O. S. G., Pincheira-Donoso, D., Powney, G. D., Sindaco, R., Tallowin, O. J. S., Torres-Carvajal, O., Trape, J. F., Vidan, E., Uetz, P., Wagner, P., Wang, Y., Orme, C. D. L., Grenyer, R., and Meiri, S. (2017). The global distribution of tetrapods reveals a need for targeted reptile conservation. Nature Ecology & Evolution 1, 1677–1682.
The global distribution of tetrapods reveals a need for targeted reptile conservation.Crossref | GoogleScholarGoogle Scholar |

Rosauer, D. F., Blom, M. P. K., Bourke, G., Catalano, S., Donnellan, S., Gillespie, G., Mulder, E., Oliver, P. M., Potter, S., Pratt, R., Rabosky, D. L., Skipwith, P. L., and Moritz, C. (2016). Phylogeography, hotspots and conservation priorities: an example from the Top End of Australia. Biological Conservation 204, 83–93.
Phylogeography, hotspots and conservation priorities: an example from the Top End of Australia.Crossref | GoogleScholarGoogle Scholar |

Scheele, B., Blanchard, W., Robinson, N., Woinarski, J., Garnett, S., Harrison, P., Lindenmayer, D., Gedyle, H., Legge, S., Gillespie, G., and Lintermans, M. (2019). Continental scale assessment reveals inadequate monitoring of threatened vertebrates in a megadiverse country. Biological Conservation 235, 273–278.
Continental scale assessment reveals inadequate monitoring of threatened vertebrates in a megadiverse country.Crossref | GoogleScholarGoogle Scholar |

Seigel, R.A., and Collins, J. T. (1993). ‘Snakes: Ecology and Behaviour.’ 2nd edn. (McGaw-Hill: New York, NY, USA.)

Sergio, F., Newton, I., Marchesi, L., and Pedrini, P. (2006). Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. Journal of Applied Ecology 43, 1049–1055.
Ecologically justified charisma: preservation of top predators delivers biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Shine, R., and Madsen, T. (1999). Prey abundance and predator reproduction: rats and pythons on a tropical Australian floodplain. Ecology 78, 1078–1086.

Shine, R., Ambariyanto, , Harlow, P. S., and Mumpuni, (1999). Reticulated pythons in Sumatra: biology, harvesting and sustainability. Biological Conservation 87, 349–357.
Reticulated pythons in Sumatra: biology, harvesting and sustainability.Crossref | GoogleScholarGoogle Scholar |

Snow, R. W., Krysko, K. L., Enge, K. M., Oberhofer, L., Warren-Bradley, A., and Wilkins, L. (2007). Introduced populations of Boa constrictor (Boidae) and Python molurus bivitattus (Pythonidae) in southern Florida. In ‘The Biology of Boas and Pythons’. (Eds R. W. Henderson and R. Powell.) pp. 417–438. (Eagle Mountain Publishing: Eagle Mountain, UT, USA.)

Stokeld, D., Fisher, A., Gentles, T., Hill, B., Woinarski, J. C. Z., Young, S., and Gillespie, G. R. (2018). Rapid increase of Australian tropical savanna reptile abundance following exclusion of feral cats. Biological Conservation 225, 213–221.
Rapid increase of Australian tropical savanna reptile abundance following exclusion of feral cats.Crossref | GoogleScholarGoogle Scholar |

Swan, M. (2007). ‘Keeping and Breeding Australian Pythons.’ (Mike Swan Books: Melbourne, Vic., Australia.)

Swanson, S. (1979). Some rock-dwelling reptiles of the Arnhem land escarpment. Northern Territory Naturalist 1979, 14–18.

Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A. (2011). The characteristics of ASTER GDEM version 2. In ‘Geoscience and Remote Sensing Symposium’, July 2011, Vancouver. pp. 3657–3660. (Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA.)

Treves, A., and Karanth, K. U. (2003). Human-carnivore conflict and perspective on carnivore management worldwide. Conservation Biology 17, 1491–1499.

Trindade-Filho, J., Carvalho, R. A., Brito, D., and Loyola, R. D. (2012). How does the inclusion of data deficient species change conservation priorities for amphibians in the Atlantic Forest? Biodiversity and Conservation 21, 2709–2718.
How does the inclusion of data deficient species change conservation priorities for amphibians in the Atlantic Forest?Crossref | GoogleScholarGoogle Scholar |

Ujvari, B., Brown, G., Shine, R., and Madsen, T. (2016). Flood and famine; climate induced collapse of a tropical predator–prey community. Functional Ecology 30, 453–458.

Wallach, A. D., Izhaki, I., Toms, J. D., Ripple, W. J., and Shanas, U. (2015). What is an apex predator? Oikos 124, 1453–1461.

Wallach, V., Williams, K. L., and Boundy, J. (2014). ‘Snakes of the World: a Catalogue of Living and Extinct Species.’ (CRC Press: London. UK.)

Webb, J. K., and Shine, R. (1997). Out on a limb: conservation implications of tree hollow use by the threatened snake species (Hoplocephalus bungaroides: Serpentes, Elapidae). Biological Conservation 81, 21–33.
Out on a limb: conservation implications of tree hollow use by the threatened snake species (Hoplocephalus bungaroides: Serpentes, Elapidae).Crossref | GoogleScholarGoogle Scholar |

Wisz, M. S., Hijmans, R. J., Peterson, A. T., Graham, C. H., and Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity & Distributions 14, 763–773.
Effects of sample size on the performance of species distribution models.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., and Braithwaite, R. W. (1990). The terrestrial vertebrate fauna and vegetation of the Kakadu Conservation Zone. Report to Resource Assessment Commission. CSIRO, Darwin, NT, Australia.

Woinarski, J. C. Z., and Braithwaite, R. W. (1991). Wildlife of Kakadu Stage III: a synthesis. Report to ANPWS. CSIRO, Darwin, NT, Australia.

Woinarski, J. C. Z., and Gambold, N. (1992). Gradient analysis of a tropical herpetofauna: distribution patterns of terrestrial reptiles and amphibians in Stage III of Kakadu National Park. Australian Wildlife Research 19, 105–127.
Gradient analysis of a tropical herpetofauna: distribution patterns of terrestrial reptiles and amphibians in Stage III of Kakadu National Park.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., and Griffiths, A. D. (1996). Report on fauna survey of some fire-monitoring plots at Kakadu National Park. Report to Australian Nature Conservation Agency. Conservation Commission of the Northern Territory, Darwin, NT, Australia.

Woinarski, J., Pavey, C., Kerrigan, R., Cowie, I., and Ward, S. (2007). ‘Lost from Our Landscape: Threatened Species of the Northern Territory.’ (Northern Territory Department of Natural Resources, Environment and the Arts: Palmerston, NT, Australia.)

Woinarski, J. C. Z., Armstrong, M., Brennan, K., Fisher, A., Griffiths, A. D., Hill, B., Milne, D. J., Palmer, C., Ward, S., Watson, M., Winderlich, S., and Young, S. (2010). Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia. Wildlife Research 37, 116–126.
Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Legge, S., Fitzsimons, J. A., Traill, B. J., Burbridge, A. A., Fisher, A., Firth, R. S. C., Gordon, I. J., Griffiths, A. D., Johnson, C. N., McKenzie, N. L., Palmer, C., Radford, I., Rankmore, B., Ritchie, E. G., Ward, S., and Ziembicki, M. (2011). The disappearing mammal fauna of northern Australia: context, cause, and response. Conservation Letters 4, 192–201.
The disappearing mammal fauna of northern Australia: context, cause, and response.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J., Gillespie, G., Greenlees, M., McDonald, P., and Fenner, A. (2017). ‘Simalia oenpelliensis. The IUCN Red List of Threatened Species 2017: e.T42494211A42494251.’ Available at http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T42494211A42494251.en [verified 15 June 2019].

Woinarski, J. C. Z., Murphy, B. P., Palmer, R., Legge, S. M., Dickman, T. S., Edwards, G., Nankivell, A., Read, J. L., and Stokeld, D. S. (2018). How many reptiles are killed by cats in Australia? Wildlife Research 45, 247–266.
How many reptiles are killed by cats in Australia?Crossref | GoogleScholarGoogle Scholar |

Ziembicki, M., Woinarski, J. C. Z., Webb, J., Vanderduys, E., Tuft, K., Smith, J., Ritchie, E., Reardon, T., Radford, I., Preece, N., Perry, J., Murphy, B., McGregor, H., Legge, S., Leahy, L., Lawes, M., Kanowski, J., Johnson, C., James, A., Griffiths, T., Gillespie, G. R., Frank, A., Burbidge, A., and Fisher, A. (2015). Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya 6, 169–226.
Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia.Crossref | GoogleScholarGoogle Scholar |