Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Species in the faeces: DNA metabarcoding as a method to determine the diet of the endangered yellow-eyed penguin

Melanie J. Young https://orcid.org/0000-0003-2818-2398 A B , Ludovic Dutoit A , Fiona Robertson A , Yolanda van Heezik https://orcid.org/0000-0003-0494-5311 A , Philip J. Seddon A and Bruce C. Robertson A
+ Author Affiliations
- Author Affiliations

A Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

B Corresponding author. Email: melanie.young@postgrad.otago.ac.nz

Wildlife Research 47(6) 509-522 https://doi.org/10.1071/WR19246
Submitted: 20 December 2019  Accepted: 15 June 2020   Published: 1 September 2020

Abstract

Context. Diet variability is a significant driver of seabird decline; however, data on seabird diet composition and trends have been affected by changes in precision and resolution owing to the evolution of different sampling methods over time. We investigated the effectiveness of applying a passive molecular diet method using faeces obtained from the endangered yellow-eyed penguin.

Aims. To assess the feasibility of applying DNA metabarcoding methods to yellow-eyed penguin faeces to evaluate diet, and to compare the reliability of diet results derived from adults and chicks, and from latrine versus fresh faecal samples.

Methods. We collected 313 faecal samples from yellow-eyed penguins resident on the Otago coast of New Zealand from October 2016 to August 2017. We used polymerase chain reaction (PCR) with mitochondrial 16S cephalopod and chordate primers to amplify prey DNA present in the faecal samples, and tested the completeness of our assembled reference databases based on previous diet research. Amplified prey DNA sequences were then assigned to taxa from our reference databases by using QIIME2.

Key results. Mitochondrial 16S chordate PCR primers were effective at identifying 29 fish taxa, with 98.3% of amplified sequences being identified to species or genus level in 193 samples (61.7% collected). There was no significant difference in the number, occurrence or proportion of ray-finned fish prey DNA sequences derived from fresh samples or latrines. Mitochondrial 16S cephalopod PCR primers classified 1.98% of amplified DNA sequences as targets, with 96.5% of these target sequences being identified to species or genus level in 48 samples (15.3% collected), and five taxa identified.

Conclusions. We recommend the collection of latrine samples to enable long-term monitoring of the diet of yellow-eyed penguins, which will optimise the trade-off between wildlife disturbance and dietary resolution. Further refinement is needed to identify cephalopod dietary components for yellow-eyed penguins, because our cephalopod primers were not as specific as those used for ray-finned fishes, amplifying a large number (>98%) of non-cephalopod species.

Implications. DNA metabarcoding offers a robust and comprehensive alternative to other, more intrusive, seabird diet-assessment methods, but still requires parallel studies to provide critical information on prey size, true diet composition and diet quality.

Additional keywords: diet, DNA metabarcoding, penguin, seabird, 16S mitochondrial DNA.


References

Alberdi, A., Aizpurua, O., Gilbert, M. T. P., and Bohmann, K. (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution 9, 134–147.
Scrutinizing key steps for reliable metabarcoding of environmental samples.Crossref | GoogleScholarGoogle Scholar |

Barrett, R. T., Camphuysen, C. J., Anker-Nilssen, T., Chardine, J. W., Furness, R. W., Garthe, S., Hüppop, O., Leopold, M. F., Montevecchi, W. A., and Veit, R. R. (2007). Diet studies of seabirds: a review and recommendations. ICES Journal of Marine Science 64, 1675–1691.
Diet studies of seabirds: a review and recommendations.Crossref | GoogleScholarGoogle Scholar |

Benson, D. A. (2004). GenBank. Nucleic Acids Research 33, D34–D38.
GenBank.Crossref | GoogleScholarGoogle Scholar |

Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., and Caporaso, J. G. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME2’s q2-feature-classifier plugin. Microbiome 6, 90.
Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME2’s q2-feature-classifier plugin.Crossref | GoogleScholarGoogle Scholar | 29773078PubMed |

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E., Silva, R. D., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B., Kang, K. B., Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G., Lee, J., Ley, R., Liu, Y. -X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y., Wang, M., Warren, J., Weber, K. C., Williamson, C. H., Willis, A. D., Xu, Z. Z., Zaneveld, J. R., Zhang, Y., Knight, R., and Caporaso, J. G. (2018). QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Pre-prints 6, e27295v2.
QIIME 2: reproducible, interactive, scalable, and extensible microbiome data science.Crossref | GoogleScholarGoogle Scholar |

Browne, T., Lalas, C., Mattern, T., and van Heezik, Y. (2011). Chick starvation in yellow-eyed penguins: evidence for poor diet quality and selective provisioning of chicks from conventional diet analysis and stable isotopes. Austral Ecology 36, 99–108.
Chick starvation in yellow-eyed penguins: evidence for poor diet quality and selective provisioning of chicks from conventional diet analysis and stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581–583.
DADA2: high-resolution sample inference from Illumina amplicon data.Crossref | GoogleScholarGoogle Scholar | 27214047PubMed |

Cavallo, C., Chiaradia, A., Deagle, B. E., McInnes, J. C., Sánchez, S., Hays, G. C., and Reina, R. D. (2018). Molecular analysis of predator scats reveals role of salps in temperate inshore food webs. Frontiers in Marine Science 5, 381.
Molecular analysis of predator scats reveals role of salps in temperate inshore food webs.Crossref | GoogleScholarGoogle Scholar |

Cranfield, H. J., Carbines, G., Michael, K. P., Dunn, A., Stotter, D. R., and Smith, D. J. (2001). Promising signs of regeneration of blue cod and oyster habitat changed by dredging in Foveaux Strait, southern New Zealand. New Zealand Journal of Marine and Freshwater Research 35, 897–908.
Promising signs of regeneration of blue cod and oyster habitat changed by dredging in Foveaux Strait, southern New Zealand.Crossref | GoogleScholarGoogle Scholar |

Deagle, B. E., Tollit, D. J., Jarman, S. N., Hindell, M. A., Trites, A. W., and Gales, N. J. (2005). Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Molecular Ecology 14, 1831–1842.
Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions.Crossref | GoogleScholarGoogle Scholar | 15836654PubMed |

Deagle, B. E., Gales, N. J., Evans, K., Jarman, S. N., Robinson, S., Trebilco, R., and Hindell, M. A. (2007). Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus). PLoS One 2, e831.
Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus).Crossref | GoogleScholarGoogle Scholar | 17786203PubMed |

Deagle, B. E., Chiaradia, A., McInnes, J., and Jarman, S. N. (2010). Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? Conservation Genetics 11, 2039–2048.
Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out?Crossref | GoogleScholarGoogle Scholar |

Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L., Kartzinel, T. R., and Eveson, J. P. (2018). Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Molecular Ecology 28, 391–406.
| 29858539PubMed |

Di Beneditto, A. P. M., Dos Santos, R. A., Rosa, K. R., and Siciliano, S. (2015). Magellanic penguins: stomach contents and isotopic profiles to assess the feeding demands of juveniles in a wintering area off Brazil. Journal of the Marine Biological Association of the United Kingdom 95, 423–430.
Magellanic penguins: stomach contents and isotopic profiles to assess the feeding demands of juveniles in a wintering area off Brazil.Crossref | GoogleScholarGoogle Scholar |

Ellenberg, U., Setiawan, A. N., Cree, A., Houston, D. M., and Seddon, P. J. (2007). Elevated hormonal stress response and reduced reproductive output in yellow-eyed penguin exposed to unregulated tourism. General and Comparative Endocrinology 152, 54–63.
Elevated hormonal stress response and reduced reproductive output in yellow-eyed penguin exposed to unregulated tourism.Crossref | GoogleScholarGoogle Scholar | 17400221PubMed |

Ellenberg, U., Mattern, T., and Seddon, P. J. (2013). Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds. Conservation Physiology 1, cot013.
Heart rate responses provide an objective evaluation of human disturbance stimuli in breeding birds.Crossref | GoogleScholarGoogle Scholar | 27293597PubMed |

Flemming, S. A., and van Heezik, Y. (2014). Stable isotope analysis as a tool to monitor dietary trends in little penguins Eudyptula minor. Austral Ecology 39, 656–667.
Stable isotope analysis as a tool to monitor dietary trends in little penguins Eudyptula minor.Crossref | GoogleScholarGoogle Scholar |

García-Borboroglu, P., Boersma, P. D., Ruoppolo, V., Pinho-da-Silva-Filho, R., Corrado-Adornes, A., Conte-Sena, D., Velozo, R., Myiaji-Kolesnikovas, C., Dutra, G., Maracini, P., Carvalho-do-Nascimento, C., Ramos-Júnior, V., Barbosa, L., and Serra, S. (2010). Magellanic penguin mortality in 2008 along the SW Atlantic coast. Marine Pollution Bulletin 60, 1652–1657.
Magellanic penguin mortality in 2008 along the SW Atlantic coast.Crossref | GoogleScholarGoogle Scholar | 20674946PubMed |

Goldsworthy, B., Young, M. J., Seddon, P. J., and van Heezik, Y. (2016). Stomach flushing does not affect apparent adult survival, chick hatching or fledging success in yellow-eyed penguins (Megadyptes antipodes). Biological Conservation 196, 115–123.
Stomach flushing does not affect apparent adult survival, chick hatching or fledging success in yellow-eyed penguins (Megadyptes antipodes).Crossref | GoogleScholarGoogle Scholar |

Hays, G. C., Doyle, T. K., and Houghton, J. D. R. (2018). A paradigm shift in the trophic importance of jellyfish? Trends in Ecology & Evolution 33, 874–884.
A paradigm shift in the trophic importance of jellyfish?Crossref | GoogleScholarGoogle Scholar |

Hilton, G. M., Houston, D. C., and Furness, R. W. (1998). Which components of diet quality affect retention time of digesta in seabirds? Functional Ecology 12, 929–939.
Which components of diet quality affect retention time of digesta in seabirds?Crossref | GoogleScholarGoogle Scholar |

Hilton, G. M., Ruxton, G. D., Furness, R. W., and Houston, D. C. (2000). Optimal digestion strategies in seabirds: a modelling approach. Evolutionary Ecology Research 2, 207–230.

Ibañez, A. E., Najle, R., Larsen, K., and Montalti, D. (2015). Hematology, biochemistry and serum protein analyses of Antarctic and non-Antarctic skuas. Waterbirds 38, 153–161.
Hematology, biochemistry and serum protein analyses of Antarctic and non-Antarctic skuas.Crossref | GoogleScholarGoogle Scholar |

Jarman, S. N., McInnes, J. C., Faux, C., Polanowski, A. M., Marthick, J., Deagle, B. E., Southwell, C., and Emmerson, L. (2013). Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS One 8, .
Adélie penguin population diet monitoring by analysis of food DNA in scats.Crossref | GoogleScholarGoogle Scholar | 24358158PubMed |

Jiang, W., and Carbines, G. (2002). Diet of blue cod, Parapercis colias, living on undisturbed biogenic reefs and on seabed modified by oyster dredging in Foveaux Strait, New Zealand. Aquatic Conservation 12, 257–272.
Diet of blue cod, Parapercis colias, living on undisturbed biogenic reefs and on seabed modified by oyster dredging in Foveaux Strait, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Kadin, M., Österblom, H., Hentati-Sundberg, J., and Olssom, O. (2012). Contrasting effects of food quality and quantity on a marine top predator. Marine Ecology Progress Series 444, 239–249.
Contrasting effects of food quality and quantity on a marine top predator.Crossref | GoogleScholarGoogle Scholar |

Käkelä, R., Käkelä, A., Kahle, S., Becker, P. H., Kelly, A., and Furness, R. W. (2005). Fatty acid signatures in plasma of captive herring gulls as indicators of demersal or pelagic fish diet. Marine Ecology Progress Series 293, 191–200.
Fatty acid signatures in plasma of captive herring gulls as indicators of demersal or pelagic fish diet.Crossref | GoogleScholarGoogle Scholar |

Käkelä, R., Furness, R. W., Kahle, S., Becker, P. H., and Käkelä, A. (2009). Fatty acid signatures in seabird plasma are a complex function of diet composition: a captive feeding trial with herring gulls. Functional Ecology 23, 141–149.
Fatty acid signatures in seabird plasma are a complex function of diet composition: a captive feeding trial with herring gulls.Crossref | GoogleScholarGoogle Scholar |

King, S., Harper, G., Wright, J., McInnes, J., van der Lubbe, J., Dobbins, M., and Murray, S. (2012). Site-specific reproductive failure and decline of a population of the endangered yellow-eyed penguin: a case for foraging habitat quality. Marine Ecology Progress Series 467, 233–244.
Site-specific reproductive failure and decline of a population of the endangered yellow-eyed penguin: a case for foraging habitat quality.Crossref | GoogleScholarGoogle Scholar |

Kitaysky, A. S., Piatt, J. F., Hatch, S. A., Kitaiskaia, E. V., Benowitz-Fredericks, Z. M., Shultz, M. T., and Wingfield, J. C. (2010). Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds. Functional Ecology 24, 625–637.
Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds.Crossref | GoogleScholarGoogle Scholar |

Kokubun, N., Kim, J.-H., and Takahashi, A. (2013). Proximity of krill and salps in an Antarctic coastal ecosystem: evidence from penguin-mounted cameras. Polar Biology 36, 1857–1864.
Proximity of krill and salps in an Antarctic coastal ecosystem: evidence from penguin-mounted cameras.Crossref | GoogleScholarGoogle Scholar |

Marchant, S., and Higgins, P. J. (1990). Megadyptes antipodes yellow-eyed penguin. In ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 1. Ratites to Ducks. Part A, Ratites to Petrels’. (Eds S. Marchant, and P. J. Higgins.) pp. 236–246. (Oxford University Press: Melbourne, Vic., Australia.)

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12.
Cutadapt removes adapter sequences from high-throughput sequencing reads.Crossref | GoogleScholarGoogle Scholar |

Mattern, T., and Ellenberg, U. (2018). Yellow-eyed penguin diet and indirect effects affecting prey composition. Collation of biological information. Technical report: Contract POP2016-05 for the Conservation Services Programme. Department of Conservation, Wellington, New Zealand.

Mattern, T., Ellenberg, U., Houston, D. M., and Davis, L. S. (2007). Consistent foraging routes and benthic foraging behaviour in yellow-eyed penguins. Marine Ecology Progress Series 343, 295–306.
Consistent foraging routes and benthic foraging behaviour in yellow-eyed penguins.Crossref | GoogleScholarGoogle Scholar |

Mattern, T., Ellenberg, U., Houston, D. M., Lamare, M., Davis, L. S., van Heezik, Y., and Seddon, P. J. (2013). Straight line foraging in yellow-eyed penguins: new insights into cascading fisheries effects and orientation capabilities of marine predators. PLoS One 8, e84381.
Straight line foraging in yellow-eyed penguins: new insights into cascading fisheries effects and orientation capabilities of marine predators.Crossref | GoogleScholarGoogle Scholar | 24367656PubMed |

Mattern, T., Meyer, S., Ellenberg, U., Houston, D. M., Darby, J. T., Young, M. J., van Heezik, Y., and Seddon, P. J. (2017). Quantifying climate change impacts emphasises the importance of managing regional threats in the endangered yellow-eyed penguin. PeerJ 5, e3272.
Quantifying climate change impacts emphasises the importance of managing regional threats in the endangered yellow-eyed penguin.Crossref | GoogleScholarGoogle Scholar | 28533952PubMed |

Mattern, T., McPherson, M. D., Ellenberg, U., van Heezik, Y., and Seddon, P. J. (2018). High definition video loggers provide new insights into behaviour, physiology, and the oceanic habitat of a marine predator, the yellow-eyed penguin. PeerJ 6, e5459.
High definition video loggers provide new insights into behaviour, physiology, and the oceanic habitat of a marine predator, the yellow-eyed penguin.Crossref | GoogleScholarGoogle Scholar | 30258706PubMed |

McInnes, J. C., Emmerson, L., Southwell, C., Faux, C., and Jarman, S. N. (2016a). Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adélie penguins. Royal Society Open Science 3, .
Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adélie penguins.Crossref | GoogleScholarGoogle Scholar | 26909171PubMed |

McInnes, J. C., Raymond, B., Phillips, R. A., Jarman, S. N., Lea, M.-A., and Alderman, R. (2016b). A review of methods used to analyse albatross diets: assessing priorities across their range. ICES Journal of Marine Science 73, 2125–2137.
A review of methods used to analyse albatross diets: assessing priorities across their range.Crossref | GoogleScholarGoogle Scholar |

McInnes, J. C., Alderman, R., Lea, M.-A., Raymond, B., Deagle, B. E., Phillips, R. A., Stanworth, A., Thompson, D. R., Catry, P., Weimerskirch, H., Suazo, C. G., Gras, M., and Jarman, S. N. (2017a). High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding. Molecular Ecology 26, 4831–4845.
High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding.Crossref | GoogleScholarGoogle Scholar | 28734075PubMed |

McInnes, J. C., Alderman, R., Deagle, B. E., Lea, M.-A., Raymond, B., and Jarman, S. N. (2017b). Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods in Ecology and Evolution 8, 192–202.
Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates.Crossref | GoogleScholarGoogle Scholar |

Meynier, L., Mackenzie, D. D. S., Duignan, P. J., Chilvers, B. L., and Morel, P. C. H. (2009). Variability in the diet of New Zealand sea lion (Phocarctos hookeri) at the Auckland Islands, New Zealand. Marine Mammal Science 25, 302–326.
Variability in the diet of New Zealand sea lion (Phocarctos hookeri) at the Auckland Islands, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Moore, P. J., and Wakelin, M. D. (1997). Diet of the yellow-eyed penguin Megadyptes antipodes, South Island, New Zealand, 1991–1993. Marine Ornithology 25, 17–29.

Österblom, H., Bignert, A., Fransson, T., and Olsson, O. (2001). A decrease in fledging body mass in common guillemot Uria aalge chicks in the Baltic Sea. Marine Ecology Progress Series 224, 305–309.
A decrease in fledging body mass in common guillemot Uria aalge chicks in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar |

Paleczny, M., Hammill, E., Karpouzi, V., and Pauly, D. (2015). Population trend of the world’s monitored seabirds, 1950–2010. PLoS One 10, e0129342.
Population trend of the world’s monitored seabirds, 1950–2010.Crossref | GoogleScholarGoogle Scholar | 26058068PubMed |

Roberts, C. D., Stewart, A. L., Struthers, C. D., Barker, J. J., Kortet, S., and Freeborn, M. (2015). ‘The Fishes of New Zealand. Vols 1–4.’ (Museum of Te Papa Tongarewa: Wellington, New Zealand.)

Szostek, K. L., and Becker, P. H. (2015). Survival and local recruitment are driven by environmental carry-over effects from the wintering area in a migratory seabird. Oecologica 178, 643–657.
Survival and local recruitment are driven by environmental carry-over effects from the wintering area in a migratory seabird.Crossref | GoogleScholarGoogle Scholar |

Thalinger, B., Oehm, J., Obwexer, A., and Traugott, M. (2017). The influence of meal size on prey DNA detectability in piscivorous birds. Molecular Ecology Resources 17, e174–e186.
The influence of meal size on prey DNA detectability in piscivorous birds.Crossref | GoogleScholarGoogle Scholar | 28776942PubMed |

Thomas, A. C., Deagle, B. E., Everson, J. P., Harsch, C. H., and Trites, A. W. (2016). Quantitative DNA metabarcoding: improved estimates of species proportional biomass using correction factors derived from control material. Molecular Ecology Resources 16, 714–726.
Quantitative DNA metabarcoding: improved estimates of species proportional biomass using correction factors derived from control material.Crossref | GoogleScholarGoogle Scholar | 26602877PubMed |

Tierney, M., Southwell, C., Emmerson, L. M., and Hindell, M. A. (2008). Evaluating and using stable-isotope analysis to infer diet composition and foraging ecology of Adélie penguins Pygoscelis adeliae. Marine Ecology Progress Series 355, 297–307.
Evaluating and using stable-isotope analysis to infer diet composition and foraging ecology of Adélie penguins Pygoscelis adeliae.Crossref | GoogleScholarGoogle Scholar |

van Heezik, Y. (1990a). Seasonal, geographical, and age-related variations in the diet of the yellow-eyed penguin (Megadyptes antipodes). New Zealand Journal of Zoology 17, 201–212.
Seasonal, geographical, and age-related variations in the diet of the yellow-eyed penguin (Megadyptes antipodes).Crossref | GoogleScholarGoogle Scholar |

van Heezik, Y. (1990b). Diets of yellow-eyed, Fiordland crested and little blue penguins breeding sympatrically on Codfish Island, New Zealand. New Zealand Journal of Zoology 17, 543–548.
Diets of yellow-eyed, Fiordland crested and little blue penguins breeding sympatrically on Codfish Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |

van Heezik, Y., and Seddon, P. J. (1989). Stomach sampling in the yellow-eyed penguin: erosion of otoliths and squid beaks. Journal of Field Ornithology 60, 451–458.

Visser, G. H. (2001). Chick growth and development in seabirds. In ‘Biology of Marine Birds’. (Eds E. A. Schreiber, and J. Burger.) pp. 439–465. (CRC Press: Boca Raton, FL, USA.)

Votier, S. C., Beahop, S., MacCormick, A., Ratcliffe, N., and Furness, R. W. (2003). Assessing the diet of great skuas, Catharacta skua, using five different techniques. Polar Biology 26, 20–26.
Assessing the diet of great skuas, Catharacta skua, using five different techniques.Crossref | GoogleScholarGoogle Scholar |

Walter, C. B., O’Neill, E., and Kirby, R. (1986). “ELISA” as an aid in the identification of fish and molluscan prey of birds in marine ecosystems. Journal of Experimental Marine Biology 96, 97–102.
“ELISA” as an aid in the identification of fish and molluscan prey of birds in marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 5261–5267.
Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.Crossref | GoogleScholarGoogle Scholar | 17586664PubMed |

Wilson, R. P. (1984). An improved stomach pump for penguins and other seabirds. Journal of Field Ornithology 55, 109–112.

Wilson, R. P., Ryan, P. G., and Wilson, M.-P. (1989). Sharing food in the stomachs of seabirds between adults and chicks: a case for delayed gastric emptying. Comparative Biochemistry and Physiology 94, 461–466.
Sharing food in the stomachs of seabirds between adults and chicks: a case for delayed gastric emptying.Crossref | GoogleScholarGoogle Scholar | 2574097PubMed |