CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Crop and Pasture Science   
Crop and Pasture Science
Journal Banner
  Plant sciences, sustainable farming systems and food quality
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
Virtual Issues
All Issues
Special Issues
Research Fronts
Farrer Reviews
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Farrer Reviews
blank image

Invited Farrer Review Series. More...


red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 43(3)

Development, growth, water-use and yield of a spring and a winter wheat in response to time of sowing

DJ Connor, S Theiveyanathan and GM Rimmington

Australian Journal of Agricultural Research 43(3) 493 - 516
Published: 1992

Abstract

The development, growth, water-use and yield of spring (Banks) and winter (Quarrion) cultivars of wheat were measured in response to time of sowing under rainfed conditions. Crop duration shortened in both cultivars (210 to 120 days) as sowing was delayed from May to August with Quarrion maintaining the longer cycle. The difference between cultivars was small (3 days) at the May sowing increasing to 21 days in August, but there were large differences in the relative durations of the component phenophases. Consistent with the shorter cycle, growth of both cultivars decreased as sowing was delayed from May to July (11.3 to 9.9 t ha-1). With August sowing, the pattern continued in Banks (6.7 t ha-1) but not in Quarrion. Seasonal evapotranspiration (ETa) of both cultivars was similar, declining from 306 to 262 mm as sowing was delayed from May to July. On average, Quarrion used more water (34%) of ETa than Banks (19%) during emergence to floral initiation (E-FI), and a corresponding smaller proportion during subsequent phenophases, floral initiation to anthesis (FI-A ) (31 v. 41%) and anthesis to maturity (A-M) (35 v. 41%). The differences between cultivars increased as sowing was delayed from May to August. Maximum evapotranspiration (ETm), estimated by the Penman equation, was evaluated against measurements made with weighed lysimeters. The ratio ETa/ETm fell progressively during the crop cycles and was always smaller for the later-developing Quarrion than for Banks. Crops of both cultivars had adequate water supply during E-FI, mean value of the ratio 0.93, but experienced water stress during FI-A and A-M. Stress was greater in Quarrion (ratios 0.71 and 0.56) than in Banks (0.88 and 0.62). In Quarrion, yield decreased progressively from 4.3 t ha-1 when sown in May to 1.6 t ha-1 in August. In contrast, yield of Banks increased from 3.7 t ha-1 in May to 4.5 t ha-1 in June and then decreased to 3.5 t ha-l in July and 2.6 t ha-1 in August. Crop water-use efficiencies are analysed for ETa (WUE) and for transpiration (TE). Excluding the August-sown crops, they ranged respectively over 11.9 to 14.8 and 25.0 to 32.5 for Quarrion and over 11.0 to 15.7 and 23.3 to 31.6 kg ha-1 mm-1 for Banks. Maximum efficiencies were not achieved by the crops of greatest yield. Keywords: winter wheat; spring wheat; development; growth yield; water use



Full text doi:10.1071/AR9920493

© CSIRO 1992

blank image
Subscriber Login
Username:
Password:  

 
PDF (1.1 MB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016