Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Salen-Based Metal Complexes and the Physical Properties of their Porous Organic Polymers

Marcello B. Solomon A , Peter D. Southon A , Aditya Rawal B , James M. Hook B C , Katrina A. Jolliffe A D and Deanna M. D’Alessandro A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia.

C School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.

D Corresponding authors. Email: kate.jolliffe@sydney.edu.au; deanna.dalessandro@sydney.edu.au

Australian Journal of Chemistry 72(11) 916-922 https://doi.org/10.1071/CH19069
Submitted: 11 February 2019  Accepted: 2 August 2019   Published: 11 September 2019

Abstract

Porous organic polymers (POPs) represent interesting candidate materials for carbon dioxide (CO2) adsorption applications owing to the permanently porous nature of the structures and the ability to vary metalloligand centres that can be incorporated as a potential means of property tuning. This work reports the synthesis and characterisation of four transition metal complexes (using M = Mn, Ni, Fe, and Pd) of the bis-bromo salen ligand, and the incorporation of these complexes into POPs with tris-(p-ethynyl)-triphenylamine to yield metallated polymers (POPMn, POPNi, POPFe, and POPPd). The POPs were shown to possess Brunauer–Emmett–Teller (BET) surface areas of up to 650 m2 g−1. Overall, this work provides further insight into the potential of permanently porous polymeric materials in post-combustion capture applications.


References

[1]  G. A. Olah, G. K. S. Prakash, A. Goeppert, J. Am. Chem. Soc. 2011, 133, 12881.
         | Crossref | GoogleScholarGoogle Scholar | 21612273PubMed |

[2]  G. T. Rochelle, Science 2009, 325, 1652.
         | Crossref | GoogleScholarGoogle Scholar | 19779188PubMed |

[3]  A. Das, D. M. D’Alessandro, CrystEngComm 2015, 17, 706.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. M. D’Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y.-S. Bae, R. Q. Snurr, Angew. Chem. Int. Ed. 2011, 50, 11586.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796.
         | Crossref | GoogleScholarGoogle Scholar | 19731282PubMed |

[7]  C. D. Chudasama, J. Sebastian, R. V. Jasra, Ind. Eng. Chem. Res. 2005, 44, 1780.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. E. Creamer, B. Gao, Crit. Rev. Environ. Sci. Technol. 2016, 50, 7276.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
         | Crossref | GoogleScholarGoogle Scholar | 19384449PubMed |

[10]  J. Liu, P. K. Thallapally, B. P. McGrail, D. R. Brown, J. Liu, Chem. Soc. Rev. 2012, 41, 2308.
         | Crossref | GoogleScholarGoogle Scholar | 22143077PubMed |

[11]  K. Susumu, K. Mitsuru, Bull. Chem. Soc. Jpn. 1998, 71, 1739.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, Nat. Rev. Mater. 2016, 1, 15018.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  O. W. Webster, F. P. Gentry, R. D. Farlee, B. E. Smart, Makromol. Chem. 1992, 54–55, 477.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  N. B. McKeown, P. M. Budd, Chem. Soc. Rev. 2006, 35, 675.
         | Crossref | GoogleScholarGoogle Scholar | 16862268PubMed |

[15]  A. Trewin, A. I. Cooper, Angew. Chem. Int. Ed. 2010, 49, 1533.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  H. A. Patel, S. Hyun Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz, A. Coskun, Nat. Commun. 2013, 4, 1357.
         | Crossref | GoogleScholarGoogle Scholar | 23322045PubMed |

[17]  W. Lu, D. Yuan, D. Zhao, C. I. Schilling, O. Plietzsch, T. Muller, S. Bräse, J. Guenther, J. Blüme, R. Krishna, Z. Li, H.-C. Zhou, Chem. Mater. 2010, 22, 5964.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc. Rev. 2013, 42, 8012.
         | Crossref | GoogleScholarGoogle Scholar | 23846024PubMed |

[19]  M. Oh, C. A. Mirkin, Nature 2005, 438, 651.
         | Crossref | GoogleScholarGoogle Scholar | 16319888PubMed |

[20]  V. A. Davankov, M. P. Tsyurupa, React. Polym. 1990, 13, 27.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  O. K. Farha, A. M. Spokoyny, B. G. Hauser, Y.-S. Bae, S. E. Brown, R. Q. Snurr, C. A. Mirkin, J. T. Hupp, Chem. Mater. 2009, 21, 3033.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  P. Pfeiffer, E. Breith, E. Lübbe, T. Tsumaki, Liebigs Ann. Chem. 1933, 503, 84.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  D. J. Darensbourg, in Synthetic Biodegradable Polymers (Eds B. Rieger, A. Künkel, W. G. Coates, R. Reichardt, E. Dinjus, A. T. Zevaco) 2012, pp. 1–27 (Springer: Berlin).

[24]  H. Khoshro, H. R. Zare, A. Gorji, M. Namazian, A. A. Jafari, R. Vafazadeh, J. Electroanal. Chem. 2014, 732, 117.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  T. Kurahashi, H. Fujii, J. Am. Chem. Soc. 2011, 133, 8307.
         | Crossref | GoogleScholarGoogle Scholar | 21553916PubMed |

[26]  T. P. Yoon, E. N. Jacobsen, Science 2003, 299, 1691.
         | Crossref | GoogleScholarGoogle Scholar | 12637734PubMed |

[27]  J. Albo, M. Alvarez-Guerra, P. Castano, A. Irabien, Green Chem. 2015, 17, 2304.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  M. Mastalerz, H.-J. S. Hauswald, R. Stoll, Chem. Commun. 2012, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. Chun, S. Kang, N. Kang, S. M. Lee, H. J. Kim, S. U. Son, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 5517.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  Y. Xie, T.-T. Wang, X.-H. Liu, K. Zou, W.-Q. Deng, Nat. Commun. 2013, 4, 1960.
         | Crossref | GoogleScholarGoogle Scholar | 23727768PubMed |

[31]  L.-H. Li, X.-L. Feng, X.-H. Cui, Y.-X. Ma, S.-Y. Ding, W. Wang, J. Am. Chem. Soc. 2017, 139, 6042.
         | 28385018PubMed |

[32]  H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512.
         | Crossref | GoogleScholarGoogle Scholar | 11671879PubMed |

[33]  S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  A. Das, M. Choucair, P. D. Southon, J. A. Mason, M. Zhao, C. J. Kepert, A. T. Harris, D. M. D’Alessandro, Microporous Mesoporous Mater. 2013, 174, 74.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  A. Demessence, D. M. D’Alessandro, M. L. Foo, J. R. Long, J. Am. Chem. Soc. 2009, 131, 8784.
         | Crossref | GoogleScholarGoogle Scholar | 19505094PubMed |

[36]  D. R. Coulson, L. C. Satek, S. O. Grim, in Inorganic Syntheses (Ed. F. A. Cotton) 1972, pp. 121–124 (John Wiley & Sons, Inc.: Hoboken, NJ).

[37]  C. Hua, B. Chan, A. Rawal, F. Tuna, D. Collison, J. M. Hook, D. M. D’Alessandro, J. Mater. Chem. C Mater. Opt. Electron. Devices 2016, 4, 2535.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  H. E. Smith, J. R. Neergaard, E. P. Burrows, F.-M. Chen, J. Am. Chem. Soc. 1974, 96, 2908.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  E. Szłyk, A. Wojtczak, A. Surdykowski, M. Goździkiewicz, Inorg. Chim. Acta 2005, 358, 467.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  D. Dollimore, P. Spooner, A. Turner, Surf. Technol. 1976, 4, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  M. Thommes, K. Kaneko, V. Neimark Alexander, P. Olivier James, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  T. Trinh, T. Vlugt, M.-B. Hägg, D. Bedeaux, S. Kjelstrup, Front Chem. 2013, 1, 38.
         | Crossref | GoogleScholarGoogle Scholar | 24790965PubMed |

[43]  P. Arab, E. Parrish, T. Islamoglu, H. M. El-Kaderi, J. Mater. Chem. A Mater. Energy Sustain. 2015, 3, 20586.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  S. Makhseed, J. Samuel, Polymer 2015, 74, 144.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  A. Bhunia, I. Boldog, A. Moller, C. Janiak, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 14990.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  X. Fu, Y. Zhang, S. Gu, Y. Zhu, G. Yu, C. Pan, Z. Wang, Y. Hu, Chem. – Eur. J. 2015, 21, 13357.
         | Crossref | GoogleScholarGoogle Scholar | 26213114PubMed |

[47]  R. Yuan, H. Ren, Z. Yan, A. Wang, G. Zhu, Polym. Chem. 2014, 5, 2266.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  P. Bhanja, A. Modak, A. Bhaumik, ChemCatChem 2019, 11, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  L. Zou, Y. Sun, S. Che, X. Yang, X. Wang, M. Bosch, Q. Wang, H. Li, M. Smith, S. Yuan, Z. Perry, H.‐C. Zhou, Adv. Mater. 2017, 29, 1700229.
         | Crossref | GoogleScholarGoogle Scholar | 28977685PubMed |