CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 41(12)

The Entry of Free Radicals Into Polystyrene Latex Particles

ME Adams, M Trau, RG Gilbert, DH Napper and DF Sangster

Australian Journal of Chemistry 41(12) 1799 - 1813
Published: 1988

Abstract

Mechanistic understanding of the processes governing the kinetics of emulsion polymerization has both scientific and technical interest. One component of this process that is poorly understood at present is that of free radical entry into latex particles. Measurements were made of the entry rate coefficient as a function of temperature for free radicals entering polystyrene latex particles in seeded emulsion polymerizations initiated by γ-rays. The activation energy for entry was found to be less than 24±3 kJ mol-1, consistent with entry being controlled by a physical (e.g., diffusional ) rather than a chemical process. Measurement of the entry rate coefficient as a function of the γ-ray dose rate suggested that the factors that determine the entry rate when the primary free radicals are uncharged are similar to those that determine the entry rate for charged free radicals derived from chemical initiation by peroxydisulfate. This result was consistent with measurements of the entry rate coefficient of charged free radicals derived from peroxydisulfate; these data were found to be virtually independent of both the extent of the latex surface coverage by the anionic surfactant sodium dodecyl sulfate and the ionic strength of the continuous phase. The data refute several proposals given in the literature for the rate-determining step for entry, being inconsistent with control by (1) collision of free radicals with the latex particles, (2) surfactant desorption , and (3) an electrostatic barrier arising from the colloidal nature of the entering free radical. The origin of the activation energy for entry remains obscure.



Full text doi:10.1071/CH9881799

© CSIRO 1988

blank image
Subscriber Login
Username:
Password:  

 
PDF (706 KB) $25
 Export Citation
 Print
  


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015