CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Animal Production Science   
Animal Production Science
Journal Banner
  Food, fibre and pharmaceuticals from animals
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 48(10)

Thermoregulation in ratites: a review

Shane K. Maloney

Physiology, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia. Email: shanem@cyllene.uwa.edu.au
PDF (346 KB) $25
 Export Citation


Laboratory and free-ranging studies on the emu, ostrich and kiwi show ratites to be competent homeotherms. While body temperature and basal metabolic rate are lower in ratites than other birds, all of the thermoregulatory adaptations present in other birds are well established in ratites. The thermoneutral zone has been established for the emu and kiwi, and extends to 10°C. Below that zone, homeothermy is achieved via the efficient use of insulation and elevated metabolic heat production. In the heat, emus and ostriches increase respiratory evaporative water loss and use some cutaneous water loss. Respiratory alkalosis is avoided by reducing tidal volume. In severe heat, tidal volume increases, but the emu becomes hypoxic and hypocapnic, probably by altering blood flow to the parabronchi, resulting in ventilation/perfusion inhomogeneities. Ostriches are capable of uncoupling brain temperature from arterial blood temperature, a phenomenon termed selective brain cooling. This mechanism may modulate evaporative effector responses by manipulating hypothalamic temperature, as in mammals. The implications of thermal physiology for ratite production systems include elevated metabolic costs for homeothermy at low ambient temperature. However, the emu and ostrich are well adapted to high environmental temperatures.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016