CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine and Freshwater Research   
Marine and Freshwater Research
Journal Banner
  Advances in the aquatic sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 55(7)

The application of sediment capping agents on phosphorus speciation and mobility in a sub-tropical dunal lake

Darren Akhurst A, Graham B. Jones A B, David M. McConchie A

A Centre for Coastal Management, School of Environmental Science and Management, Southern Cross University, Lismore, NSW 2480, Australia.
B Corresponding author. Email: gjones@scu.edu.au
PDF (367 KB) $25
 Export Citation


Experimental sediment cores from Lake Ainsworth, Australia, were exposed to an induced 46-day, anoxic/oxic cycle in the laboratory, mimicking the seasonal thermal stratification cycle commonly observed in the lake’s waters every summer. Under oxic conditions the supply of phosphorus (P) and iron (Fe) to the overlying water was slow, however, induced anoxia led to an enhanced release of P and Fe from the sediments to the water column. An inverse relationship between total P, Fe and redox potential suggests that Lake Ainsworth sediments are redox sensitive. Phosphorus speciation analysis of Lake Ainsworth sediments revealed the presence of a large pool of organic P, reactive Fe-bound P, and CaCO3-bound P, the latter fraction decreasing during anoxic conditions. Two sediment-capping agents, a lanthanum modified bentonite clay and Bauxsol (a waste product from the aluminium smelting industry) were assessed for their ability to reduce the levels of P released from Lake Ainsworth sediments during the 46-day, anoxic/oxic cycle. The bentonite clay was highly effective at reducing plant available P in anoxic/oxic conditions, but levels of dissolved Fe were enhanced with its use. Although the use of Bauxsol to remove plant available P is not recommended in anoxic waters, its use in suspension in oxic waters warrants further study.

Keywords: anoxia, dunal lake, eutrophication, northern New South Wales, phosphorus release, redox, remediation agents, sediments.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016