CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |         Contents Vol 55(7)

Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia

L. A. Sullivan A B, R. T. Bush A

A Centre for Acid Sulfate Soil Research, Southern Cross University, Lismore, NSW 2480, Australia.
B Corresponding author. Email: lsulliva@scu.edu.au
 
PDF (1.1 MB) $25
 Export Citation
 Print
  


Abstract

Iron precipitate accumulations from surface environments surrounding waterways (such as the side of drains and soil surface horizons) in acid sulfate soil landscapes were analysed for their mineralogy, micromorphology and chemical properties. Schwertmannite (Fe8(OH)5.5(SO4)1.25) was the dominant mineral in these accumulations. Goethite (α-FeOOH) was the other iron precipitate mineral identified in these accumulations and the data indicate that this iron mineral was formed from schwertmannite, often as pseudomorphs after schwertmannite. The schwertmannite in these accumulations had similar morphology and chemical properties to schwertmannite reported for environments affected by acid mine drainage. The activity of Fe3+ in the drainage waters in these landscapes appears to be controlled by schwertmannite during both low flow (dry season) and flood conditions. Iron precipitate accumulations contained appreciable amounts of stored acidity (i.e. titratable actual acidity of between 164 and 443 mol (H+) t–1, and 1900 to 2580 mol (H+) t–1 of schwertmannite upon complete conversion to goethite) that tends to buffer these waters to very acidic conditions (i.e. pHs ~3.0–3.5). The relationship between water quality (i.e. pH and sulfate concentration) and type of iron precipitate mineral formed should enable the mineralogy of the iron precipitates in these surface environments to be used to help identify the degree of severity of degradation in these acid sulfate soil landscapes and to monitor the effectiveness of remediation programmes.

Keywords: geochemistry, goethite, micromorphology, mineralogy, schwertmannite, water quality.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014