CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 58(3)

A decline in the abundance and condition of a native bivalve associated with Caulerpa taxifolia invasion

Jeffrey T. Wright A C, Louise A. McKenzie B, Paul E. Gribben B

A Institute for Conservation Biology and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
B Centre for Marine Biofouling and Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
C Corresponding author. Email: jeffw@uow.edu.au
PDF (263 KB) $25
 Export Citation


Caulerpa taxifolia is a fast-spreading invasive seaweed that threatens biodiversity in temperate Australian estuaries. To date, little is known about its effects on infauna. In the present study, we describe variation in demographic and life-history traits of the abundant infaunal bivalve, Anadara trapezia, in C. taxifolia and uninvaded habitats (seagrass and unvegetated sediments) at multiple sites across three estuaries in south-eastern New South Wales. Densities of A. trapezia were always lower in C. taxifolia than on unvegetated sediment, and lower in C. taxifolia than in seagrass at three out of four sites where they were compared. Dry tissue weight of A. trapezia was also lower in C. taxifolia than on unvegetated sediment at most sites, but was only lower in C. taxifolia than in seagrass at one of four sites. Populations were dominated by larger individuals (>45 mm length), but smaller individuals (35–45 mm length) were more common in C. taxifolia and seagrass. A. trapezia shell weight and morphology was variable and appeared weakly affected by invasion. Generally, our findings are consistent with the hypothesis that A. trapezia is negatively affected by C. taxifolia. However, C. taxifolia invasion appears complex and, at some places, its effects may not differ from those of native seagrass. There is a need for manipulative studies to understand the mechanisms underlying the effects of C. taxifolia on infauna.

Keywords: Anadara trapezia, infauna, invasive species.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016