CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 59(3)

Sources of carbon fuelling production in an arid floodplain river

Michele A. Burford A B, Andrew J. Cook A, Christine S. Fellows A, Stephen R. Balcombe A, Stuart E. Bunn A

A Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
B Corresponding author. Email: m.burford@griffith.edu.au
 
PDF (333 KB) $25
 Export Citation
 Print
  


Abstract

Dryland rivers are characterised by highly pulsed and unpredictable flow, and support a diverse biota. The present study examined the contribution of floodplain sources to the productivity of a disconnected dryland river; that is a waterhole, after a major overland flood event. Rate measures of productivity were combined with stable isotope and biomass data on the food web in the waterhole and floodplain. The present study estimated that 50% of the fish carbon in the waterhole after flooding was derived from floodplain food sources. In the few months after retraction of the river to isolated waterholes, the large biomass of fish concentrated from the flooding decreased by 80%, most likely as a result of starvation. Based on the development of a carbon budget for the waterhole, mass mortality is hypothesised to be the cause of the high rates of heterotrophic production in the waterhole. The present study suggests that floodplain inputs are important for fuelling short-term production in waterholes, but via an unconventional pathway; that is, fish mortality. The episodic nature of flooding in dryland rivers means that changes in flow regimes, such as water regulation or abstraction, will reduce flooding and hence floodplain subsidies to the river. This is likely to have significant impacts on river productivity.

Keywords: algal production, bacterial production, fish, waterhole.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015