CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine and Freshwater Research   
Marine and Freshwater Research
Journal Banner
  Advances in the aquatic sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Submit Article
blank image
Use the online submission system to send us your paper.


Article << Previous     |     Next >>   Contents Vol 59(6)

Modelling wave-induced disturbance in highly biodiverse marine macroalgal communities: support for the intermediate disturbance hypothesis

Phillip R. England A B, Julia Phillips A, Jason R. Waring A, Graham Symonds A, Russell Babcock A

A CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tas 7001, Australia.
B Corresponding author. Email: phillip.england@csiro.au
PDF (248 KB) $25
 Export Citation


As biodiversity declines globally, it is becoming increasingly important to understand the processes that create and maintain biodiverse communities. We examined whether the extraordinarily high species diversity of macroalgal communities in shallow coastal waters off south-west Western Australia is related to wave-induced physical disturbance. We used the numerical wave model SWAN to estimate the hydrodynamic forces generated by waves in bathymetrically complex coastal reefs. Oscillatory water motion at the seabed during extreme wave events was used as an index of physical disturbance in macroalgal communities. There was a significant curvilinear relationship between species diversity and disturbance index, consistent with the intermediate disturbance hypothesis (IDH). Diversity was lower at exposed offshore sites where disturbance is likely to be highest and at very sheltered sites with the least disturbance. Our results match those from some other highly diverse habitats, including rainforests, grasslands and coral reefs in which patchy, stochastic disturbance regimes have been hypothesised to prevent the development of homogeneous climax communities, promoting spatiotemporal heterogeneity and increasing total system diversity. Our results represent important evidence in support of a role for the IDH in driving diversity in marine plant communities.

Keywords: biodiversity, orbital motion, wave modelling.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016