CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>        Online Early    

Dipole vortices in the Great Australian Bight

George R. Cresswell A D , Lars C. Lund-Hansen B and Morten Holtegaard Nielsen C

A CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tas. 7001, Australia.
B Aquatic Biology, Bioscience, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark.
C Arctic Technology Centre, Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800 Kgs. Lyngby, Denmark.
D Corresponding author. Email: george.cresswell@csiro.au

Marine and Freshwater Research - http://dx.doi.org/10.1071/MF13305
Submitted: 19 November 2013  Accepted: 3 May 2014   Published online: 7 November 2014


 
PDF (1.7 MB) $25
 Export Citation
 Print
  
Abstract

Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm ‘mushroom’ dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB) with cooler, fresher, oxygen-rich waters offshore. The alternating ‘jets’ flowing into the mushrooms were directed mainly northwards and southwards and differed in temperature by only 1.5°C; however, the salinity difference was as much as 0.5, and therefore quite large. The GAB waters were slightly denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5 km day–1 over two weeks, and one new mushroom carried GAB water southwards at 7 km day–1. Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current, the South Australian Current, the Flinders Current and the waters of Bass Strait.

Additional keywords: ADCP, Chl-a, CTD, NOAA, SeaWIFS.


References

Anderskouv, K., Surlyk, F., Huuse, M., Lykke-Andersen, H., Bjerager, M., and Tang, C. D. (2010). Sediment waves with a biogenic twist in Pleistocene cool water carbonates, Great Australian Bight. Marine Geology 278, 122–139.
CrossRef |

Basson, M., Hobday, A. J., Eveson, J. P., and Patterson, T.A. (2012). ‘Spatial Interactions Among Juvenile Southern Bluefin Tuna at the Global Scale: a Large Scale Archival Tag Experiment. FRDC Project No: 2003/002.’ (CSIRO: Collingwood, VIC.)

Bye, J. A. T. (1972). Oceanic circulation south of Australia. In ‘Antarctic Oceanology II: The Australian-New Zealand Sector’, Antarctic Research Series, vol. 19. (Ed. D. E. Hayes.) pp. 95–100. (American Geophysical Union: Washington, DC.)

Cresswell, G. R., and Griffin, D. A. (2004). The Leeuwin Current, eddies and sub-Antarctic waters off south-western Australia. Marine and Freshwater Research 55, 267–276.
CrossRef |

Cresswell, G. R., and Peterson, J. L. (1993). The Leeuwin Current south of Western Australia. Australian Journal of Marine and Freshwater Research 44, 285–303.

Fedorov, K. N., and Ginsburg, A. I. (1989). Mushroom-like currents (vortex dipoles): one of the most wide-spread forms of non-stationary coherent motions in the ocean. In ‘Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence’. (Eds J. C. Nihoul and B. M. Jamart.) pp. 1–14. (Elsevier, Amsterdam.)

Ginsburg, A. I., and Fedorov, K. N. (1984). The evolution of mushroom-shape currents in the ocean. Akademiia Nauk SSSR. Doklady 276, 481–484.

Griffiths, R. W., and Linden, P. F. (1982). Laboratory experiments on fronts. Part I: density-driven boundary currents. Astrophysical Fluid Dynamics 19, 159–187.
CrossRef |

Kämpf, J., Doubell, M., Griffin, D., Matthews, R. L., and Ward, T. M. (2004). Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophysical Research Letters 31, L09310.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, 437–471.
CrossRef |

McMillin, L. M., and Crosby, D. S. (1984). Theory and validation of multiple window sea surface temperature technique. Journal of Geophysical Research 89, 3655–3661.
CrossRef |

Middleton, J. F., and Bye, J. A. T. (2007). A review of the shelf–slope circulation along Australia’s southern shelves: Cape Leeuwin to Portland. Progress in Oceanography 75, 1–41.
CrossRef |

Nilsson, C. S., and Tildesley, P. C. (1986). Navigation and re-mapping of AVHRR imagery. In ‘1st Australian AVHRR Conference’. (Ed. A. J. Prata.) pp. 286–298. (CSIRO, Division of Groundwater Research: Perth.)

Pearce, A. F., and Griffiths, R. W. (1991). Instability and eddy pairs on the Leeuwin Current south of Australia. Deep-Sea Research 32, 1511–1534.

Petrusevics, P., Bye, J. A. T., Fahlbusch, V., Hammat, J., Tippins, D. R., and van Wijk, E. (2009). High salinity winter outflow from a mega inverse-estuary – the Great Australian Bight. Continental Shelf Research 29, 371–380.
CrossRef |

Richardson, L. E., Kyser, T. K., James, N. P., and Bone, Y. (2009). Analysis of hydrographic and stable isotope data to determine water masses, circulation, and mixing in the eastern Great Australian Bight. Journal of Geophysical Research 114, C10016.
CrossRef |

Ridgway, K. R., and Condie, S. A. (2004). The 5500-km-long boundary flow off western and southern Australia. Journal of Geophysical Research 109, C04017.
CrossRef |

Rintoul, S. R., and Sokolov, S. (2001). Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). Journal of Geophysical Research 106, 2815–2832.
CrossRef |

Schodlok, M. P., Tomczak, M., and White, N. (1997). Deep sections through the South Australian Basin and across the Australian-Antarctic Discordance. Geophysical Research Letters 24, 2785–2788.
CrossRef |

Sebille, E. v., England, M. H., Zika, J. D., and Sloyan, B. M. (2012). Tasman leakage in a fine-resolution ocean model. Geophysical Research Letters 39, L06601.

Strickland, J. D. H., and Parsons, T. R. (1972). ‘A Practical Handbook of Seawater Analysis.’ Bulletin Number 167. (Fisheries Research Board of Canada: Ottawa.) pp. 310.

Tomczak, M., Pender, L., and Liefrink, S. (2004). Variability of the subtropical front in the Indian Ocean south of Australia. Ocean Dynamics 54, 506–519.
CrossRef |

Truesdale, G. A., and Gameson, A. L. H. (1957). The solubility of oxygen in saline water. Journal du Conseil Permanent International pour l’Exploration de la Mer 22, 163–166.
| CAS |

UNESCO (1981). ‘International Oceanographic Tables, Vol. 3.’ UNESCO Technical Papers in Marine Science, 39. (UNESCO: Paris.)


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014