CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 48(7)

Physiological responses of seagrasses used to identify anthropogenic nutrient inputs

James W. Udy and William C. Dennison

Marine and Freshwater Research 48(7) 605 - 614
Published: 1997

Abstract

Fertilization experiments have established that seagrass growth in Moreton Bay can be limited by the supply of both N and P. In the present study, morphological and physiological characteristics (canopy height, shoot density, biomass, growth, tissue nutrient content, amino acid concentrations and δ15N ratios) of Zostera capricorni Aschers. in Moreton Bay, close to and distant from nutrient sources, were compared. Z. capricorni at the four sites close to nutrient sources (sewage, septic or prawn-farm effluent, or river discharge), had physiological characteristics representative of high nutrient availability and at the five sites distant from nutrient sources had physiological characteristics representative of low nutrient availability. Differences in sediment nutrient concentrations (NH4+ and PO43- ), seagrass morphology and growth were not related to proximity to nutrient sources. However, the nutrient content of the seagrasses and their amino acid concentrations were consistently higher at sites close to a nutrient source. The amino acids glutamine and asparagine were the most responsive to elevated nutrient availability, and δ15N values of seagrasses reflected the source of N rather than the nutrient load. These results demonstrate that physiological characteristics of seagrasses can be used to identify the nutrient load and source affecting marine ecosystems.



Full text doi:10.1071/MF97001

© CSIRO 1997

blank image
Subscriber Login
Username:
Password:  

 
PDF (386 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016