CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine and Freshwater Research   
Marine and Freshwater Research
Journal Banner
  Advances in the aquatic sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 48(5)

Experimental manipulations of the biomass of introduced carp (Cyprinus carpio) in billabongs. II. Impacts on benthic properties and processes1

A. I. Robertson, M. R. Healey and A. J. King

Marine and Freshwater Research 48(5) 445 - 454
Published: 1997

Abstract

Two billabongs on the floodplain of the Murrumbidgee River, Australia, were partitioned in half with impermeable plastic barriers and the biomass of carp was manipulated to establish high- and low-carp biomass treatments in each billabong. Measurements of benthic variables (rates of particle settlement, biofilm development, sediment respiration, macrophyte detritus decomposition, sediment solid-phase nutrient concentrations and benthic algal biomass) were performed over four months from summer to winter 1995. Rates of particle settlement were greater in the high-carp treatment of each billabong throughout the experiment. High carp biomass had a negative impact on the autotrophic component of the biofilm developing on wood blocks placed at different heights above the sediment surface but the mechanism responsible differed between billabongs. Sediment oxygen demand became greater in the presence of a higher biomass of carp during the experiment but time courses differed between billabongs. Manipulations of carp biomass did not influence algal biomass on the sediment surface, the rate of decomposition of macrophyte detritus or sediment solid-phase nutrients or nutrient ratios. The impact of carp on benthic and surficial processes was significant but the mechanisms of change differed between billabongs.



Full text doi:10.1071/MF97032

© CSIRO 1997

blank image
Subscriber Login
Username:
Password:  

 
PDF (178 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016