CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine and Freshwater Research   
Marine and Freshwater Research
Journal Banner
  Advances in the aquatic sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 28(1)

Use of a quanta meter to measure attenuation and underwater reflectance of photosynthetically active radiation in some inland and coastal south-eastern Australian waters

JTO Kirk

Australian Journal of Marine and Freshwater Research 28(1) 9 - 21
Published: 1977


The attenuation of total photosynthetically active radiation (PAR) in natural waters and its characterization by means of a vertical attenuation coefficient are briefly discussed. The factors determining underwater reflectance (ratio of upward to downward irradiance at a given depth) are considered, and a simple mathematical treatment is presented which leads to the conclusion that within that part of the water body where the asymptotic radiance distribution exists, if reflection from the bottom is negligible then the reflectance is equal to the asymptotic backscattering coefficient (defined in the text) divided by 2K, where K is the (natural logarithm) vertical attenuation coefficient.

Data collected using a commercially available quantum irradiance meter over a 2-year period for various inland and coastal waters in south-eastern Australia are presented together with measure- ments of levels of yellow substance and phytoplankton. In the turbid inland waters attenuation of PAR closely follows an exponential law. In the much clearer coastal waters, by contrast, attenuation of PAR is approximately biphasic, the vertical attenuation coefficient in the upper few metres being noticeably higher than that at greater depths. Within any one water body the vertical attenuation coefficient was observed to vary up to four-fold during the 2-year period: nevertheless there were indications that the average attenuation of PAR tended to differ characteristically from one water body to another. In one of the inland waters, measurements at different times of day showed that the vertical attenuation coefficient was not strongly dependent on solar altitude.

Underwater reflectance values in the inland waters were surprisingly high (0.04-0.21) compared to values in the literature: this is probably a consequence of the high turbidity of these waters. Calculated values of the asymptotic backscattering coefficient for the inland lakes are presented. It is suggested that measurements of yellow substance and phytoplankton, together with some estimate of light scattering, in parallel with measurements of attenuation of PAR would facilitate an understanding of the factors responsible for that attenuation.

Full text doi:10.1071/MF9770009

© CSIRO 1977

blank image
Subscriber Login

PDF (668 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016