CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn


Article     |     Next >>   Contents Vol 40(5)

Seasonal dynamics of production, and nutrient accumulation and cycling by Phragmites asutralis (Cav.) Trin. ex Stuedel in a nutrient-enriched swamp in Inland Australia. I. Whole Plants

P.J. Hocking

Australian Journal of Marine and Freshwater Research 40(5) 421 - 444
Published: 1989


A study was made of the seasonal changes in dry matter production and patterns of nutrient accumulation by Phragmites australis in a nutrient-enriched swamp in inland Australia. The density of live shoots was highest (224 m-2) in October, but the peak standing crop of live shoots (9890 g m-2) occurred in early May. Peak below-ground biomass (21 058 g m-2) occurred in early August. Rhizome biomass constituted 75% of the below-ground biomass, and showed a distinct seasonal pattern. Net annual above-ground primary production (NAAP), estimated by the maximum-minimum method, was 9513 g m-2. Correction for shoot mortality and leaf shedding before, and production after, the maximum standing crop was attained increased NAAP to 12 898 g m-2. Whole plant production estimated by the maximum-minimum method was 9960 g m-2, and the corrected estimate was 14 945 g m-2. A model of dry-matter production indicated that translocation of carbohydrate from rhizomes could have provided 33% of the dry matter of shoots. About 23% of the dry matter of shoots was redistributed to below-ground organs during senescence.

Concentrations of N, P, K, S, Cl and Cu declined, but concentrations of Ca, Mg, Na, Fe and Mn increased as shoots aged. Concentrations of N, P and Zn in rhizomes reached maxima in winter, and decreased in spring. Rhizomes usually contained the greatest quantity of a nutrient in the whole plant, and roots usually had less than 25% of the total plant content. There were seasonal fluctuations in the quantities of N, P, K, Zn and Cu in rhizomes. Nutrient accumulation by live shoots was underestimated by 22-55% using the maximum-minimum method. Nutrient budgets showed considerable internal cycling of N, P, K, S and Cu from rhizomes to developing shoots in spring, and from senescing shoots to rhizomes during autumn and winter.

Full text doi:10.1071/MF9890421

© CSIRO 1989

blank image
Subscriber Login

PDF (1 MB) $40
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015