CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube


Article << Previous     |     Next >>   Contents Vol 45(5)

Detection, identification and mapping of cyanobacteria — Using remote sensing to measure the optical quality of turbid inland waters

DLB Jupp, JTO Kirk and GP Harris

Australian Journal of Marine and Freshwater Research 45(5) 801 - 828
Published: 1994


The advantages of airborne scanning for the detection, identification and mapping of algal species, cyanobacteria and associated water parameters (such as turbidity) can be realized if current research outcomes are developed into operational methods based on images with high spectral resolution. Evidence for this has become available through data obtained recently in Australia from the Compact Airborne Spectrographic Imager. This paper shows how pigments associated with cyanobacteria are detectable, even in the very turbid waters typical of eastern Australia. It demonstrates how, if the waterbodies and their constituents can be characterized by a programme of field and laboratory measurement, current processing techniques and models allow the concentrations of different constituents (algae and particles) in the photic zone to be estimated and mapped. The challenge for operational remote sensing of optical water quality in Australia (and throughout the world) is seen to have two components. One is to provide an effective characterization of the target inland and adjacent coastal waters and the other is to streamline the data analysis to provide maps of water properties in the time and cost frameworks required for operational use.

Full text doi:10.1071/MF9940801

© CSIRO 1994

blank image
Subscriber Login

PDF (7.6 MB) $40
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014