CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > International Journal of Wildland Fire   
International Journal of Wildland Fire
  Journal of the International Association of Wildland Fire
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
20-Year Author Index
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with CP
blank image
facebook twitter logo LinkedIn

red arrow Connect with IAWF
blank image
facebook twitter LinkedIn


Article << Previous     |     Next >>   Contents Vol 14(1)

Simulation of the Big Elk Fire using coupled atmosphere–fire modeling

Janice L. Coen

National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA. Telephone: +1 303 497 8986; fax: +1 303 497 8181; email: janicec@ncar.ucar.edu
PDF (3.7 MB) $25
 Export Citation


Models that simulate wildland fires span a vast range of complexity; the most physically complex present a difficult supercomputing challenge that cannot be solved fast enough to become a forecasting tool. Coupled atmosphere–fire model simulations of the Big Elk Fire, a wildfire that occurred in the Colorado Front Range during 2002, are used to explore whether some factors that make simulations more computationally demanding (such as coupling between the fire and the atmosphere and fine atmospheric model resolution) are needed to capture wildland fire parameters of interest such as fire perimeter growth. In addition to a Control simulation, other simulations remove the feedback to the atmospheric dynamics and use increasingly coarse atmospheric resolution, including some that can be computed in faster than real time on a single processor. These simulations show that, although the feedback between the fire and atmosphere must be included to capture accurately the shape of the fire, the simulations with relatively coarse atmospheric resolution (grid spacing 100–500 m) can qualitatively capture fire growth and behavior such as surface and crown fire spread and smoke transport. A comparison of the computational performance of the model configured at these different spatial resolutions shows that these can be performed faster than real time on a single computer processor. Thus, although this model still requires rigorous testing over a wide range of fire incidents, it is computationally possible to use models that can capture more complex fire behavior (such as rapid changes in intensity, large fire whirls, and interactions between fire, weather, and topography) than those used currently in the field and meet a faster-than-real-time operational constraint.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016