International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

International Journal of Wildland Fire

International Journal of Wildland Fire

International Journal of Wildland Fire publishes articles on basic and applied aspects of wildland fire science including, but not confined to, ecological impact, modelling fire and its effects, and management of fire. Read more about the journalMore

Editors-in-Chief: Susan G. Conard and Stefan Doerr

Current Issue

International Journal of Wildland Fire

Volume 25 Number 11 2016

WF15120Spatial and temporal variations of fire regimes in the Canadian Rocky Mountains and Foothills of southern Alberta

Marie-Pierre Rogeau, Mike D. Flannigan, Brad C. Hawkes, Marc-André Parisien and Rick Arthur
pp. 1117-1130

Distinct historical fire regimes with evidence of an anthropogenic influence exist between the Subalpine, Montane and Upper Foothills of southern Alberta. Post-1948 median fire return intervals have departed by up to 223% in the Montane and Foothills, while the Subalpine had a 42% departure in the most rugged region.

WF16058Anthropogenic influence on wildfire activity in Alberta, Canada

François-Nicolas Robinne, Marc-André Parisien and Mike Flannigan
pp. 1131-1143

We investigated the effect of human development on the area burned in Alberta over a 31-year period. We tested the importance of several human factors. Our results point to a possible ‘ecological frontier’ in which human ignitions increase landscape fire susceptibility in areas where recent industrial expansion and forested wildlands overlap.

WF16020Recovery and adaptation after wildfire on the Colorado Front Range (2010–12)

Miranda H. Mockrin, Susan I. Stewart, Volker C. Radeloff and Roger B. Hammer
pp. 1144-1155

Time after wildfire is often discussed as an opportunity for policy change and adaptation, where new regulations and rebuilding can transform the wildland–urban interface, reducing future risk. Our study of recovery post-fire in Colorado found some evidence of adaptation, but also extensive reinvestment in hazard-prone environments, supported by local governments.

WF16072Spatial variability of surface fuels in treated and untreated ponderosa pine forests of the southern Rocky Mountains

Emma Vakili, Chad M. Hoffman, Robert E. Keane, Wade T. Tinkham and Yvette Dickinson
pp. 1156-1168

Fuel component semivariance increased with particle diameter regardless of stand condition, with stand-level fuel component loading providing strong predictions (R2 = 0.99). Spatial scales of autocorrelation followed closely (R2 = 0.88) with fuel particle diameter. Incorporating spatial knowledge into fuel sampling will improve fire modelling and wildlife habitat assessments over singular stand-level means.

WF16038Near-term probabilistic forecast of significant wildfire events for the Western United States

Haiganoush K. Preisler, Karin L. Riley, Crystal S. Stonesifer, Dave E. Calkin and W. Matthew Jolly
pp. 1169-1180

We present a probabilistic model for forecasting expected number of significant wildfire events for the upcoming week for the Western United States. The procedure may be used to provide daily maps of fire risk with expected number and quantiles of significant fires in each risk category.

WF15150Faster prediction of wildfire behaviour by physical models through application of proper orthogonal decomposition

Elisa Guelpa, Adriano Sciacovelli, Vittorio Verda and Davide Ascoli
pp. 1181-1192

In this paper, proper orthogonal decomposition is applied for the first time to the prediction of fire evolution by physical modelling. The paper shows how this reduction method is able to dramatically reduce the computational cost of physical models without causing the loss of important information.

WF15223Visual assessments of fuel loads are poorly related to destructively sampled fuel loads in eucalypt forests

Liubov Volkova, Andrew L. Sullivan, Stephen H. Roxburgh and Christopher J. Weston
pp. 1193-1201

Visual assessment of forest fuels is often used to estimate fuel load and predict fire behaviour. More than 500 visual assessments were compared against destructively sampled fuel loads, showing poor correlation between the two and highlighting several serious deficiencies in the operational fuel hazard assessment process.

Extreme soil heating is a concern to forest managers. Temperatures lethal to fine roots and soil organisms were measured beneath combusted mega-logs to at least 10 cm for about 7 hours. Soils in a broadcast burn of masticated fuels experienced lethal temperatures in most cases only at the surface for about an hour.

Online Early

The peer-reviewed and edited version of record published online before inclusion in an issue

Published online 26 October 2016

WF16025Area burned in alpine treeline ecotones reflects region-wide trends

C. Alina Cansler, Donald McKenzie and Charles B. Halpern

We analysed wildfires from 1984 to 2012 in eight mountainous ecoregions to determine if recent climate-driven increases in burning extended to alpine treeline ecotones. Little alpine vegetation burned, but in four of eight regions, the proportion of area burned in subalpine parkland was similar to or greater than that in the larger landscape.

Published online 20 October 2016

WF15204Fire severity alters spatio–temporal movements and habitat utilisation by an arboreal marsupial, the mountain brushtail possum (Trichosurus cunninghami)

L. E. Berry, D. B. Lindenmayer, T. E. Dennis, D. A. Driscoll and S. C. Banks

Large wildfires which burn uniformly may have a greater impact on fauna than fires which generate diverse patterns of burnt and unburnt habitat. We found that Possum movement behaviour varied between landscapes which were burnt more evenly than those with diverse burn patterns. The spatial patterns of habitat created by large destructive wildfires can alter the behaviour and ecological relationships of fauna in forest ecosystems.

Published online 19 October 2016

WF16050Historical reconstructions of California wildfires vary by data source

Alexandra D. Syphard and Jon E. Keeley

A comparison of historical wildfire records in California shows large differences between written and spatial data sources, especially in data completeness. Smaller discrepancies in annual area burned result in cumulatively large differences over time. Different datasets reflect different strengths and weaknesses and these should be considered in any historical analysis.

Published online 18 October 2016

WF15218Dead organic matter and the dynamics of carbon and greenhouse gas emissions in frequently burnt savannas

Garry D. Cook, , Maëlys Muepu and Adam C. Liedloff

An integrated approach was developed to quantify changes in both dead organic matter and emissions of nitrous oxide and methane with changes in fire regime. A case study in tropical savannas of northern Australia indicated that altered fire management increased carbon stock by more than 3 times the carbon dioxide equivalent change in emissions.

Published online 18 October 2016

WF16070Curvature effects in the dynamic propagation of wildfires

J. E. Hilton, C. Miller, J. J. Sharples and A. L. Sullivan

Complex interactions between the environment and heat transfer processes can dynamically change the way a fire propagates. In this paper, we parametrise these effects using fire line curvature. Using curvature in a dynamic computational model shows a closer match to experimental fires than models without a curvature parameter.

Just Accepted

These articles have been peer reviewed and accepted for publication. They are still in production and have not been edited, so may differ from the final published form.

Most Read

The Most Read ranking is based on the number of downloads in the last 60 days from the CSIRO PUBLISHING website. Usage statistics are updated daily.

Submit Article

Use the online submission system to send us your manuscript.

IJWF Content Free to IAWF Members

All journal content can be accessed by IAWF members through the IAWF Members-Only site.