CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > International Journal of Wildland Fire   
International Journal of Wildland Fire
http://www.iawfonline.org/
  Journal of the International Association of Wildland Fire
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
20-Year Author Index
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with CP
blank image
facebook twitter logo LinkedIn

red arrow Connect with IAWF
blank image
facebook twitter LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 6(3)

Remote Sensing of Forest Fire Severity and Vegetation Recovery

JD White, KC Ryan, CC Key and SW Running

International Journal of Wildland Fire 6(3) 125 - 136
Published: 1996

Abstract

Burned forested areas have patterns of varying burn severity as a consequence of various topographic, vegetation, and meteorological factors. These patterns are detected and mapped using satellite data. Other ecological information can be abstracted from satellite data regarding rates of recovery of vegetation foliage and variation of burn severity on different vegetation types. Middle infrared wavelengths are useful for burn severity mapping because the land cover changes associated with burning increase reflectance in this part of the electromagnetic spectrum. Simple stratification of Landsat Thematic Mapper data define varying classes of burn severity because of changes in canopy cover, biomass removal, and soil chemical composition. Reasonable maps of burn severity are produced when the class limits of burn severity reflectance are applied to the entire satellite data. Changes in satellite reflectance over multiple years reveal the dynamics of vegetation and fire severity as low burn areas have lower changes in reflectance relative to high burn areas. This results as a consequence of how much the site was altered due to the burn and how much space is available for vegetation recovery. Analysis of change in reflectance across steppe, riparian, and forested vegetation types indicate that fires potentially increase biomass in steppe areas, while riparian and forested areas are slower to regrow to pre-fire conditions. This satellite-based technology is useful for mapping severely burned areas by exploring the ecological manifestations before and after fire. Keywords: Vegetation recovery; Glacier National Park; Burn severity; Landsat Thematic Mapper; Reflectance; Classification



Full text doi:10.1071/WF9960125

© IAWF 1996

blank image
Subscriber Login
Username:
Password:  

 
PDF (840 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016