Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Ab Initio Studies of Carbonyl Radical Additions to Hydrazone Systems

Sara H. Kyne A and Carl H. Schiesser A B
+ Author Affiliations
- Author Affiliations

A ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Vic. 3010, Australia.

B Corresponding author. Email: carlhs@unimelb.edu.au

Australian Journal of Chemistry 62(7) 728-733 https://doi.org/10.1071/CH09165
Submitted: 19 March 2009  Accepted: 21 April 2009   Published: 13 July 2009

Abstract

Ab initio and DFT calculations reveal that intermolecular radical additions of both acyl and oxyacyl radials to hydrazones occur through SOMO → π*hydrazone, πhydrazone → SOMO and LPN → SOMO interactions between the radical and the hydrazone π-system. Both acetyl and methoxycarbonyl radicals show preference for addition to the carbon end of the carbon–nitrogen π-bond. At the highest level of theory used in this study (G2//MP2(full)/6-31G*), energy barriers of 11.2 and 22.6 kJ mol–1 are calculated for acetyl radical addition to the carbon and nitrogen-ends of N-aminomethanimine respectively. The analogous energy barriers for the methoxycarbonyl radical are 4.9 and 25.7 kJ mol–1 at the same level of theory.


Acknowledgements

This work would not have been possible without the support of the Australian Research Council through the Centre of Excellence Program. We also gratefully acknowledge the support of the Victorian Institute for Chemical Sciences High Performance Computing Facility and the Australian Partnership for Advanced Computing National Facility.


References


[1]   W. R. Bowman, P. T. Stephenson, N. K. Terrett, A. R. Young, Tetrahedron 1995, 51,  7959.
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  
        | Crossref |  GoogleScholarGoogle Scholar | CAS |  open url image1

[11]   Frisch M. J. , Trucks G. W. , Schlegel H. B. , Scuseria G. E. , Robb M. A. , Cheeseman J. R. , Montgomery J. A. Jr. , Vreven T. , Kudin K. N. , Burant J. C. , Millam J. M. , Iyengar S. S. , Tomasi J. , Barone V. , Mennucci B. , Cossi M. , Scalmani G. , Rega N. , Petersson G. A. , Nakatsuji H. , Hada M. , Ehara M. , Toyota K. , Fukuda R. , Hasegawa J. , Ishida M. , Nakajima T. , Honda Y. , Kitao O. , Nakai H. , Klene M. , Li X. , Knox J. E. , Hratchian H. P. , Cross J. B. , Adamo C. , Jaramillo J. , Gomperts R. , Stratmann R. E. , Yazyev O. , Austin A. J. , Cammi R. , Pomelli C. , Ochterski J. W. , Ayala P. Y. , Morokuma K. , Voth G. A. , Salvador P. , Dannenberg J. J. , Zakrzewski V. G. , Dapprich S. , Daniels A. D. , Strain M. C. , Farkas O. , Malick D. K. , Rabuck A. D. , Raghavachari K. , Foresman J. B. , Ortiz V. J. , Cui Q. , Baboul A. G. , Clifford S. , Cioslowski J. , Stefanov B. B. , Liu G. , Liashenko A. , Piskorz P. , Komaromi I. , Martin R. L. , Fox D. J. , Keith T. , Al-Laham M. A. , Peng C. Y. , Nanayakkara A. , Challacombe M. , Gill P. M. W. , Johnson B. , Chen W. , Wong M. W. , Gonzalez C. , Pople J. A. , Gaussian 03, Revision B.05 2003 (Gaussian Inc.: Pittsburgh, PA).

[12]   Glendening E. D. , Badenhoop J. K. , Reed A. E. , Carpenter J. E. , Bohmann J. A. , Morales C. M. , Weinhold F. , NBO 5.0 2001 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI).