Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Three Novel Polymeric CoII/CuII Complexes Assembled from 5-Nitro-1,2,3-benzenetricarboxylate and 4,4′-Bipyridine: Syntheses, Crystal Structures, and Magnetic Properties

Xiaofei Zhu A , Ning Wang B , Yuhui Luo A , Yu Pang A , Dan Tian A and Hong Zhang A C
+ Author Affiliations
- Author Affiliations

A Institute of polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.

B Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China.

C Corresponding author. Email: zhangh@nenu.edu.cn

Australian Journal of Chemistry 64(10) 1346-1354 https://doi.org/10.1071/CH10431
Submitted: 29 November 2010  Accepted: 10 May 2011   Published: 23 August 2011

Abstract

To investigate the coordination behaviour of tricarboxylate ligands that always induced the formation of intriguing metal organic frameworks, three CoII/CuII complexes constructed with bi-/tri-nuclear secondary building units (SBUs), namely CoII3(O2N-btc)2(4,4′-bpy)3(H2O)2 (1), [CuII3(O2N-btc)2(4,4′-bpy)2(H2O)2]·2H2O(2) and [CuII5(O2N-btc)2(O2N-btcH)2(4,4′-bpy)22 -OH2)2(H2O)8]·4H2O(3) (O2N-btcH3 = 5-nitro-1,2,3-benzenetricarboxylate, 4,4′-bpy = 4,4-bipyridyl), were hydrothermally synthesized using O2N-btcH3 and 4,4′-bpy as ligands. Complexes 1 and 2 exhibit the 3D framework constructed from a binuclear [M2(COO)2] (M = CuII and CoII) unit and a mononuclear MII unit, displaying (4·6·8)2(64·82) (42·68·83·102) and (4·6·8)2(62·84) (42·62·810·12) topology, respectively. Complex 3 displays an interesting 2D ladder-layered network constructed from a trinuclear [Cu32-OH2)2] unit and a mononuclear CuII unit as the linking nodes, showing (42.6)2(46.66.83) nets. These compounds are well characterized by elemental analysis, FTIR, thermogravimetric analysis and powder X–ray diffraction. The direct current magnetic susceptibility measurements were carried out to study their magnetic properties.


References

[1]  (a) M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc. 1994, 116, 1151.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Acc. Chem. Res. 1998, 31, 474.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) O. R. Evans, W. Lin, Acc. Chem. Res. 2002, 35, 511.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. L. James, Chem. Soc. Rev. 2003, 32, 276.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev. 2003, 246, 247.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) L. Carlucci, G. Ciani, D. M. Proserpio, Chem. Commun. 2004, 380.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) S. Q. Ma, X. S. Wang, D. Q. Yuan, H. C. Zhou, Angew. Chem. Int. Ed. 2008, 47, 4130.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) B. Moulton, M. Zaworotko, Chem. Rev. 2001, 101, 1629.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F. A. A. Paz, J. Klinowski, Inorg. Chem. 2004, 43, 3948.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Ruiz-Pérez, P. Lorenzo Luis, M. Hernández Molina, M. M. Laz, F. S. Delgado, P. Gili, M. Julve, Eur. J. Inorg. Chem. 2004, 3873.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. K. Ghosh, P. K. Bharadwaj, Inorg. Chem. 2004, 43, 5180.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) E. Yang, J. Zhang, Z. J. Li, S. Gao, Y. Kang, Y. B. Chen, Y. H. Wen, Y. G. Yao, Inorg. Chem. 2004, 43, 6525.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Du, X. J. Jiang, X. J. Zhao, Inorg. Chem. 2006, 45, 3998.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) S. Varughese, V. R. Pedireddi, Chemistry 2006, 12, 1597.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) D. L. Caulder, R. E. Powers, T. N. Parac, K. N. Raymond, Angew. Chem. Int. Ed. 1998, 37, 1840.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) G. Baum, E. C. Constable, D. Fenske, C. E. Housecroft, T. Kulke, Chem. Commun. 1999, 195.
      (c) C. M. Liu, S. Gao, H. Z. Kou, Chem. Commun. 2001, 1670.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schröder, Chemistry 2002, 8, 2026.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. G. Xiong, X. Xue, H. Zhao, X. Z. You, B. F. Abrahams, Z. L. Xue, Angew. Chem. Int. Ed. 2002, 41, 3800.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) C. Y. Su, Y. P. Cai, C. L. Chen, M. D. Smith, W. Kaim, H. C. zur Loye, J. Am. Chem. Soc. 2003, 125, 8595.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) X. Zhu, J. W. Zhao, B. L. Li, Y. Song, Y. M. Zhang, Y. Zhang, Inorg. Chem. 2010, 49, 1266.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) O. M. Yaghi, G. M. Li, H. L. Li, Nature 1995, 378, 703.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. S. Chui, S. M. Lo, J. P. H. Charmant, A. g. Orpen, I. D. Williams, Science 1999, 283, 1148.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Pan, E. B. Woodlock, X. T. Wang, C. Zheng, Inorg. Chem. 2000, 39, 4174.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) F. A. Cotton, C. Lin, C. A. Murillo, Inorg. Chem. 2001, 40, 6413.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. O. H. Gutschke, D. J. Price, A. K. Powell, P. T. Wood, Angew. Chem. Int. Ed. 2001, 40, 1920.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. P. Suh, J. W. Ko, H. J. Choi, J. Am. Chem. Soc. 2002, 124, 10976.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) S. O. H. Gutschke, D. J. Price, A. K. Powell, P. T. Wood, Angew. Chem. Int. Ed. 2001, 40, 1920.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) W. Chen, J. Y. Wang, C. Chen, Q. Yue, H. M. Yuan, J. S. Chen, S. N. Wang, Inorg. Chem. 2003, 42, 944.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) L. Xu, B. Liu, G. C. Guo, J. S. Huang, Inorg. Chem. Commun. 2006, 9, 220.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) B. Liu, L. Xu, Inorg. Chem. Commun. 2006, 9, 364.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) H. A. Habib, J. Sanchiz, C. Janiak, Dalton Trans. 2008, 4877.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) L. Xu, E. Y. Choi, Y. U. Kwon, Inorg. Chem. Commun. 2008, 11, 1190.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) Z. J. Zhang, H. Y. Liu, S. Y. Zhang, W. Shi, P. Cheng, Inorg. Chem. Commun. 2009, 12, 223.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) Y. Z. Zheng, Y. B. Zhang, M. L. Tong, W. Xue, X. M. Chen, Dalton Trans. 2009, 1396.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) J. Tao, Y. Zhang, M. L. Tong, X. M. Chen, T. Yuen, C. L. Lin, X. Y. Huang, J. Li, Chem. Commun. 2002, 1342.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) Y. Z. Zheng, M. L. Tong, X. M. Chen, New. J. Chem. 2004, 28, 1412.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. J. Plater, M. R. S. Foreman, J. R. A. Howie, J. M. S. Skakle, A. M. Z. Stawin, Inorg. Chim. Acta 2001, 315, 126.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. P. Ren, L. S. Long, L. S. Zheng, S. W. Ng, Main Group Met. Chem. 2002, 25, 323.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Q. Zheng, L. S. Long, R. B. Huang, L. S. Zheng, Appl. Organomet. Chem. 2003, 17, 739.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. V. Ganesan, S. Natarajan, Inorg. Chem. 2004, 43, 198.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. Yan, C. D. Wu, X. He, Y. Q. Sun, C. Z. Lu, Cryst. Growth Des. 2005, 5, 821.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) P. S. Wang, C. N. Moorefield, M. Panzer, G. R. Newkome, Chem. Commun. (Camb.) 2005, 465.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. H. Xie, S. X. Liu, B. Gao, C. D. Zhang, C. Y. Sun, D. H. Li, Z. M. Su, Chem. Commun. (Camb.) 2005, 2402.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. R. Xiao, E. B. Wang, H. Y. An, Y. G. Li, L. Xu, Cryst. Growth Des. 2007, 7, 506.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Du, J. X. Jiang, X. J. Zhao, Inorg. Chem. 2007, 46, 3987.
      (e) Y. Y. Liu, J. F. Ma, J. Yang, Z. M. Su, Inorg. Chem. 2007, 46, 3027.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. B. Che, C. B. Liu, B. Q. Liu, W. Wang, Z. L. Xu, Cryst. Eng. Comm 2008, 10, 184.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) L. Xu, S. H. Yan, E. Y. Choi, J. Y. Lee, Y. U. Kwon, Chem. Commun. 2009, 3431.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) Y. Z. Zheng, Y. B. Zhang, M. L. Tong, W. Xue, X. M. Chen, Dalton Trans. 2009, 1396.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) Y. Q. Wang, R. Cao, D. F. Sun, W. H. Bi, X. Li, X. J. Li, J. Mol. Struct. 2003, 657, 301.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) A. Banerjee, P. Mahata, S. Natarajan, Eur. J. Inorg. Chem. 2008, 2008, 3501.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) H. S. Huh, D. Min, Y. K. Lee, S. W. Lee, Bull. Korean Chem. Soc. 2002, 23, 619.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) D. E. Wang, K. J. Deng, K. L. Lv, C. G. Wang, L. L. Wen, D. F. Li, Cryst. Eng. Com. 2009, 11, 1442.
      (b) L. F. Ma, L. Y. Wang, S. R. Batten, J. G. Wang, Cryst. Growth Des. 2009, 9, 1741.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) L. F. Ma, B. Liu, L. Y. Wang, J. L. Hu, M. Du, Cryst. Eng. Com. 2010, 12, 1439.
      (b) L. F. Ma, C. P. Li, L. Y. Wang, M. Du, Cryst. Growth Des. 2010, 10, 2641.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. F. Ma, Q. L. Meng, C. P. Li, B. Li, L. Y. Wang, M. Du, F. P. Liang, Cryst. Growth Des. 2010, 10, 3036.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  G. B. Deacon, R. J. Phillips, Coord. Chem. Rev. 1980, 33, 227.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. M. Sheldrick, SHELXS 97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany 1997.

[11]  O. Kahn, Molecular Magnetism 1993 (Wiley-VCH: NewYork).

[12]  (a) H. L. Sun, S. Gao, B. Q. Ma, G. Su, Inorg. Chem. 2003, 42, 5399.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. L. Sun, Z. Wang, M. S. Gao, Inorg. Chem. 2005, 44, 2169.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Y. Liu, J. F. Ma, J. Yang, Z. M. Su, Inorg. Chem. 2007, 46, 3027.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. Hitoshi, A. T. Motoko, I. Katsuya, K. Mohamedally, J. Mater. Chem. 2001, 11, 2146.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) A. Rodriguez-Fortea, P. Alemany, S. Alvarez, E. Ruiz, Chemistry 2001, 7, 627.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. Ruiz, P. Alemany, S. Alvarez, J. Cano, J. Am. Chem. Soc. 1997, 119, 1297.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) L. F. Ma, B. Liu, L. Y. Wang, Dalton Trans. 2010, 39, 2301.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. F. Song, C. Massera, M. Quesada, A. M. M. Lanfredi, I. Mutikainen, U. Turpeinen, J. Reedijk, Inorg. Chim. Acta 2005, 358, 1171.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Tudor, V. C. Kravtsov, M. Julve, F. Lloret, Y. A. Simonov, B. B. Averkiev, M. Andruh, Inorg. Chim. Acta. 2005, 358, 2066.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) S. H. Yan, X. J. Zheng, L. C. Li, D. Q. Yuan, L. P. Jin, Dalton Trans. 2011, 40, 1758.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F. A. Mautner, J. H. Albering, M. Corbella, S. S. Massoud, Inorg. Chem. Commun. 2011, 14, 702.
         | Crossref | GoogleScholarGoogle Scholar |