Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Preparation of Highly Crystalline Poly(2,5-dimethoxyaniline) Nanoplates Using a Soft-Template Method and Their Structural Characterization

Shanxin Xiong A , Jing Liu B and Xuehong Lu A B C
+ Author Affiliations
- Author Affiliations

A Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore.

B School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.

C Corresponding author. Email: asxhlu@ntu.edu.sg

Australian Journal of Chemistry 64(9) 1196-1202 https://doi.org/10.1071/CH11157
Submitted: 20 April 2011  Accepted: 17 May 2011   Published: 27 July 2011

Abstract

A highly crystalline poly(2,5-dimethoxyaniline) (PDMA) nanoplate was synthesized via oxidative polymerization of 2,5-dimethoxyaniline (DMA) using poly(styrenesulfonate) (PSS) as dopant in a reaction system with low PSS concentration. The nanoplate formation conditions and the underlying mechanism were investigated. It is believed that the PSS/DMA complex has more extended conformation in the dilute aqueous system so that it can form parallel packed aggregates that act as a soft template for polymerization of DMA to form plate-like morphology. When PSS is replaced by p-toluene sulfonic acid (p-TSA) under the same conditions, only PDMA particles are formed because the p-TSA/DMA complex forms different shaped micelles. The structure and morphology of PDMA nanoplates were characterized using Fourier transform infrared spectroscopy, X-ray diffraction, selected area electron diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The results show that the PDMA nanoplates of several nanometres in thickness are stacked together randomly and each nanoplate has a single crystal-like structure.


References

[1]  (a) M. G. Han, S. K. Cho, S. G. Oh, S. S. Im, Synth. Met. 2002, 126, 53.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) G. P. Song, J. Han, R. Guo, Synth. Met. 2007, 157, 170.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. F. Huang, C. W. Lin, Polymer 2009, 50, 775.
      (d) J. Bhadra, D. Sarkar, Mater. Lett. 2009, 63, 69.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G. C. Li, C. Q. Zhang, H. R. Peng, K. Z. Chen, Z. K. Zhang, Macromol. Rapid Commun. 2008, 29, 1954.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. S. Wang, J. X. Wang, Z. D. Dai, Z. Wang, F. B. Zhang, Synth. Met. 2009, 159, 1583.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Q. H. Sun, M. C. Park, Y. L. Deng, Mater. Lett. 2007, 61, 3052.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) Y. Berdichevsky, Y. H. Lo, Adv. Mater. 2006, 18, 122.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Baek, Y. Kim, H. Oh, E. Kim, Curr. Appl. Phys. 2009, 9, S110.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Joo, B. H. Kim, D. H. Park, H. S. Kim, D. S. Seo, J. H. Shim, S. J. Lee, K. S Ryu, K. Kim, J.-I. Jin, T. J. Lee, C. J. Lee, Synth. Met. 2005, 153, 313.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. N. Aleshin, Adv. Mater. 2006, 18, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) C. G. Wu, T. Bein, Science 1994, 264, 1757.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Z. Zhang, Z. Wei, M. Wan, Macromolecules 2002, 35, 5937.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Zhang, W. J. Goux, S. K. Manohar, J. Am. Chem. Soc. 2004, 126, 4502.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Huang, S. Virji, B. H. Weiller, R. B. Kaner, J. Am. Chem. Soc. 2003, 125, 314.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. L. Briseno, S. C. B. Mannsfeld, P. J. Shamberger, F. S. Ohuchi, Z. Bao, S. A. Jenekhe, Y. Xia, Chem. Mater. 2008, 20, 4712.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) Z. Y. Liu, Y. Zhu, L. Wang, C. M. Ding, N. Wang, M. X. Wan, L. Jiang, Macromol. Rapid Commun. 2011, 32, 512.
      (b) Z. M. Zhang, J. Y. Deng, M. X. Wan, Mater. Chem. Phys. 2009, 115, 275.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  C. Q. Zhou, J. Han, R. Guo, Macromolecules 2008, 41, 6473.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J. Han, G. Song, R. Guo, Adv. Mater. 2007, 19, 2993.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. Zhou, J. Han, G. Song, R. Guo, Macromolecules 2007, 40, 7075.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. S. Sutar, R. Tewari, G. K. Dey, S. K. Gupta, J. V. Yakhmi, Synth. Met. 2009, 159, 1067.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. Su, N. Nuraje, L. Zhang, I.-W. Chu, H. Matsui, N.-L. Yang, Macromol. Symp. 2009, 279, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  N. Nuraje, K. Su, N.-I. Yang, H. Matsui, ACS Nano 2008, 2, 502.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) C. R. Martin, Science 1994, 266, 1961.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Gierschner, J. Cornil, H. J. Egelhaaf, Adv. Mater. 2007, 19, 173.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) H. Sakaguchi, H. Matsumura, H. Gong, Nat. Mater. 2004, 3, 551.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Meng, D. F. Perepichka, M. Bendikov, F. Wudl, G. Z. Pan, W. Yu, W. Dong, S. Brown, J. Am. Chem. Soc. 2003, 125, 15151.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) P. Yin, P. A. Kilmartin, Curr. Appl. Phys. 2004, 4, 141.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) B. Palys, A. Kudelski, A. Stankiewica, K. Jackowska, Synth. Met. 2000, 108, 111.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. E. Mavundla, G. F. Malgas, P. Baker, E. I. Iwuoha, Electroanalysis 2008, 20, 2347.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) Y. J. Yu, Z. H. Si, Chem. Langmuir 2006, 22, 3899.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. X. Zhang, L. J. Zhang, M. X. Wan, Y. Wei, Synth. Met. 2006, 156, 454.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. H. Jung, Y. M. Lee, N.-J. Jo, J.-O. Lee, Macromol. Chem. Phys. 2008, 209, 1083.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Patil, Y.-K. Seo, Y. K. Hwang, J.-S. Chang, P. Patil, Sens. Actuators B Chem. 2008, 132, 116.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. P. L. Rubinger, C. R. Martin, M. A. De Paoli, R. M. Rubinger, Sens. Actuators B Chem. 2007, 123, 42.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  G. M. Neelgund, E. Hrehorova, M. Joyce, V. Bliznyuk, Polym. Int. 2008, 57, 1083.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) W. R. Salaneck, B. Liedberg, O. Inganäs, R. Erlandsson, I. Lundström, A. G. MacDiarmid, M. Haopern, N. L. D. Somasiri, Mol. Cryst. Liq. Cryst. 1985, 121, 191.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met. 1988, 24, 231.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Patil, S. R. Sainkar, P. P. Patil, Synth. Met. 2004, 140, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  B. C. Roy, M. D. Gupta, L. Bhowmik, J. K. Ray, Bull. Mater. Sci. 2001, 24, 389.
         | Crossref | GoogleScholarGoogle Scholar |