Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Chemical Activation in Azide and Nitrene Chemistry:
Methyl Azide, Phenyl Azide, Naphthyl Azides, Pyridyl Azides, Benzotriazoles, and Triazolopyridines

Curt Wentrup A
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
Email: wentrup@uq.edu.au

Australian Journal of Chemistry 66(8) 852-863 https://doi.org/10.1071/CH13283
Submitted: 2 June 2013  Accepted: 24 July 2013   Published: 8 August 2013

Abstract

Chemical activation (the formation of ‘hot’ molecules due to chemical reactions) is ubiquitous in flash vacuum thermolysis (FVT) reactions, and awareness of this phenomenon is indispensable when designing synthetically useful gas-phase reactions. Chemical activation is particularly prevalent in azide chemistry because the interesting singlet nitrenes are high-energy intermediates, and their reactions are highly exothermic. Consequently, chemical activation is observed in the isomerization of methylnitrene CH3N to methylenimine (methanimine) CH2=NH, facilitating the elimination of hydrogen to form HCN or HNC. Rearrangements of phenylnitrene, 1- and 2-naphthylnitrenes, and 2-, 3- and 4-pyridylnitrenes afford cyanocyclopentadiene, 3- and 2-cyanoindenes, and 2- and 3-cyanopyrroles, all showing the effects of chemical activation by undergoing facile interconversion of isomers. Chemical activation can often be reduced or removed entirely by increasing the pressure, thereby promoting collisional deactivation. Larger molecules having more degrees of freedom are better able to dissipate excess energy; therefore the effects of chemical activation are less pronounced or completely absent in the formation of 3-cyanoindole and 1-cyanobenzimidazoles from 3- and 4-quinolylnitrenes and 4-quinazolinylnitrenes, respectively. In compounds possessing nitro groups, chemical activation can cause the loss of the nitro group at nominal temperatures far below those normally needed to cleave the C-NO2 bond.


References

[1]     (a) P. J. Robinson, K. A. Holbrook, Unimolecular Reactions 1972 (Wiley: New York, NY).
         (b) C. Wentrup, Reactive Molecules 1984, pp. 225–230 (Wiley-Interscience: New York, NY).
      (c) B. S. Rabinovitch, M. C. Flowers, Q. Rev. Chem. Soc. 1964, 18, 122.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) N. Balucani, L. Cartechini, M. Alagia, P. Casavecchia, G. G. Volpi, J. Phys. Chem. A 2000, 104, 5655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVaqt7s%3D&md5=fe2639c706a8348fd5ca201420159f85CAS |
      (b) H. Umemoto, N. Terada, K. Tanaka, J. Chem. Phys. 2000, 112, 5762.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  R. Hoye, B. Baire, D. Niu, P. H. Willoughby, B. P. Woods, Nature 2012, 490, 208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyrsrzN&md5=de90c3896fd219becf9a5363e7b33ea7CAS |

[4]  R. W. Hoffmann, K. Suzuki, Angew. Chem. Int. Ed. 2013, 52, 2655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFeqsQ%3D%3D&md5=448912fbf0676ce7c82df60dfe940746CAS |

[5]  M. J. Travers, D. C. Cowles, E. P. Clifford, G. B. Ellison, P. C. Engelking, J. Phys. Chem. 1999, 111, 5349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1Cntbo%3D&md5=a75bb80866448f5fe7331a62389ae2a5CAS |

[6]  C. R. Kemnitz, C. B. Ellison, W. L. Karney, W. T. Borden, J. Am. Chem. Soc. 2000, 122, 1098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wnsw%3D%3D&md5=887dfffaeb3081a98a2d2b557e130121CAS |

[7]  C. Richards, C. Meredith, S.-J. Kim, G. E. Quelch, H. F. Schaefer, J. Chem. Phys. 1994, 100, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVKiu7k%3D&md5=26437af170cd519440f7eb591bba1598CAS |

[8]  (a) J. A. Leermakers, J. Am. Chem. Soc. 1933, 55, 3098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXlsFOisA%3D%3D&md5=83279f483547d8d910c45a0a24a68901CAS |
      (b) F. O. Rice, C. J. Grelecki, J. Phys. Chem. 1957, 61, 830.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Pritzkow, D. Timm, J. Prakt. Chem. 1966, 32, 178.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) C. L. Currie, B. DeB. Darwent, Can. J. Chem. 1963, 41, 1552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVWis78%3D&md5=2f3fef28eb82813dad79bbd28a95d738CAS |
      (b) M. S. O’Dell, B. DeB. Darwent, Can. J. Chem. 1970, 48, 1140.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Koch, Tetrahedron 1967, 23, 1747.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  C. Wentrup, C. O. Kappe, M. W. Wong, Pure Appl. Chem. 1995, 67, 749.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVOqs7c%3D&md5=bd21ac686f2847f3a0485f159207a3fcCAS |

[11]     (a) Azides and Nitrenes (Ed. E. F. V. Scriven) 1984 (Academic Press: Orlando, FL).
         (b) S. Bräse, K. Banert, Organic Azides – Synthesis and Applications 2008 (Wiley: Chichester, UK).
         (c) Nitrenes and Nitrenium Ions (Eds D. E. Falvey, A. D. Gudmundsdottir) 2013 (Wiley: Hoboken, NJ).

[12]  S. Fischer, Diploma Thesis: Darstellung von Nitriliminen durch thermische Zersetzung von N-Heterocyclen und Untersuchung ihrer Stabilisierungsreaktionen in Lösung und in der Gasphase 1980, Philipps-Universität Marburg, Germany.

[13]  S. Fischer, C. Wentrup, M. Winnewisser, DFG Schwerpunktprogramm Erzeugung und Stabilisierung reaktiver anorganischer Moleküle, Bad Honnef, Germany, 18–19 Oct 1982. Available at https://www.researchgate.net/publication/234051408_Identification_of_Methylenimine_in_the_Thermolysis_of_Methyl_Azide._Chemical_Activation_Causing_Fragmentation_to_H2_and_HCN (accessed 1 June 2013).

[14]  C. Wentrup, Gas-Phase and Matrix Studies, in Azides and Nitrenes (Ed. E. F. V. Scriven) 1984, pp. 396–399 (Academic Press: Orlando, FL).

[15]  M. Winnewisser, B. P. Winnewisser, Z. Naturforsch. C 1974, 29a, 633.

[16]  (a) The microwave spectrum of CH2=NH was first obtained by H-abstraction from methylamine and by pyrolysis of methylamine and ethane-1,2-diamine at 900–1000°C/~10–2 hPa: D. R. Johnson, F. J. Lovas, Chem. Phys. Lett. 1972, 15, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVOgsL0%3D&md5=b7b099ce3b7b69a66128b2b7fae73b74CAS |
      (b) R. Pearson, F. J. Lovas, J. Chem. Phys. 1977, 66, 4149.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) This method permitted the identification of methylenimine as an interstellar molecule in Sagittarius B2: P. D. Godfrey, R. D. Brown, B. J. Robinson, M. W. Sinclair, Astrophys. Lett. 1973, 13, 119.
      (d) See also: L. Dore, L. Bizzocchi, C. Degli Esposti, Astron. Astrophys. 2012, 544, A19.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Millimeterwave spectrum of HCN: F. DeLucia, W. Gordy, Phys. Rev. 1969, 187, 58.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhslWktw%3D%3D&md5=c940e7a97b2082087103a940a7b52cf9CAS |

[18]  (a) Activation energy for MeN3 decomposition: 37 kcal mol–1: J. L. Franklin, V. H. Dibeler, R. M. Reese, M. Krauss, J. Am. Chem. Soc. 1958, 80, 298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXjvV2nsQ%3D%3D&md5=99d66c35ee4d3013ced7d6334621488dCAS |
         (b) 40.5 kcal mol–1: Ref [8b].
      (c) 38.4 kcal mol–1: C. C. Chen, M. J. McQuaid, J. Phys. Chem. A 2012, 116, 3561.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) Enthalpy of formation of CH3N3: 67 kcal mol–1: W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O’Neal, A. S. Rogers, R. Shaw, R. Walsh, Chem. Rev. 1969, 69, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktleqtb0%3D&md5=8dc9f9c7dd20967d7649a610115cb6eaCAS |
      (b) 71.0 kcal mol–1: D. W. Rogers, F. J. McLafferty, J. Chem. Phys. 1995, 103, 8302.
         | Crossref | GoogleScholarGoogle Scholar |
         (c) 72.2–73.8 kcal mol–1: M. J. McQuaid, B. M. Rice, Computational Chemistry-Based Enthalpy-of-Formation, Enthalpy-of-Vaporization, and Enthalpy-of-Sublimation Predictions for Azide-Functionalized Compounds 2006, Army Research Laboratory ARL-TR-3770. Available at http://www.arl.army.mil/arlreports/2006/ARL-TR-3770.pdf (accessed 1 June 2013).

[20]  (a) Enthalpy of formation of CH2NH:26 kcal mol–1: D. J. DeFrees, W. J. Hehre, J. Phys. Chem. 1978, 82, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXht1Snsrg%3D&md5=1243e89559db78b2e62f119ab054f858CAS |
      (b) 21± 4 kcal mol–1: J. L. Holmes, F. P. Lossing, P. M. Mayer, Chem. Phys. Lett. 1992, 198, 211.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) 21.1 ± 0.5 kcal mol–1: G. de Oliveira, J. L. Martin, I. K. C. Silwal, J. F. Liebman, J. Comput. Chem. 2001, 22, 1297.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) For alternative preparations, low temperature isolation and NMR characterization of CH2NH see: J.-C. Guillemin, J.-M. Denis, Angew. Chem. Int. Ed. 1982, 21, 690.
      (b) J.-C. Guillemin, J.-M. Denis, Angew. Chem. Suppl. 1982, 1515.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-C. Guillemin, J.-M. Denis, J. Chem. Soc., Chem. Commun. 1985, 951.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J.-C. Guillemin, J.-M. Denis, M. Bogey, J. L. Destombes, Tetrahedron Lett. 1986, 27, 1147.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  R. D. Brown, P. D. Godfrey, D. A. Winkler, Aust. J. Chem. 1982, 35, 667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktlSmu70%3D&md5=6560a9299db6c0c9781e2a84e6785287CAS |

[23]  (a) H. Bock, R. Dammel, Angew. Chem. Int. Ed. 1987, 26, 504.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Bock, R. Dammel, J. Am. Chem. Soc. 1988, 110, 5261.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Bock, R. Dammel, L. Horner, Chem. Ber. 1981, 114, 220.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) For the identification of the photoelectron spectrum of CH3N in this reaction see: J. Wang, Z. Sun, X. Zhu, X. Yang, M. Ge, D. Wang, Angew. Chem. Int. Ed. 2001, 40, 3055.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) A. Teslja, B. Nizamov, P. J. Dagdigian, J. Phys. Chem. A 2004, 108, 4433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVSksL8%3D&md5=7fe91acec07e1f64526c178364f95155CAS |
      (b) D. M. Wong, P. J. Dagdigian, Spectrochim. Acta A 2007, 67, 1019.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) J. Demuynck, D. J. Fox, Y. Yamaguchi, H. F. Schaefer, J. Am. Chem. Soc. 1980, 102, 6204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXls1OnsrY%3D&md5=750db326cb53a1dbe5bcb9108161a0e9CAS |
      (b) J. A. Pople, K. Raghavachari, M. J. Frisch, J. S. Binkley, P. v. R. Schleyer, J. Am. Chem. Soc. 1983, 105, 6389.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. T. Luke, J. A. Pople, M.-B. Krogh-Jespersen, Y. Apeloig, M. Kami, J. Chandrasekhar, P. v. R. Schleyer, J. Am. Chem. Soc. 1986, 108, 270.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  (a) J. F. Arenas, J. I. Marcos, J. C. Otero, A. Sanchez-Galvez, J. Soto, J. Chem. Phys. 1999, 111, 551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVShtL0%3D&md5=6a1b0a4274547d59ce58e4e3fc15e0b7CAS |
      (b) J. F. Arenas, J. I. Marcos, J. C. Otero, I. L. Tocon, J. Soto, Int. J. Quantum Chem. 2001, 84, 241.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) See also: M. Besora, J. N. Harvey, J. Chem. Phys. 2008, 129, 044303.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  D. W. McPherson, M. L. McKee, P. B. Shevlin, J. Am. Chem. Soc. 1983, 105, 6493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsVKrtb4%3D&md5=0059838871b41c72c0d99281534a61a0CAS |

[28]  (a) D. E. Milligan, M. E. Jacox, J. Chem. Phys. 1963, 39, 712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXkt1Gqsbc%3D&md5=51a0eb1fa4813df91371cec3893b2449CAS |
      (b) D. E. Milligan, M. E. Jacox, J. Chem. Phys. 1967, 47, 278.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. E. Jacox, D. E. Milligan, J. Mol. Spectrosc. 1975, 56, 333.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. T. Nguyen, D. Sengupta, T.-K. Ha, J. Phys. Chem. 1996, 100, 6499.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  (a) M. T. Nguyen, P. J. Groarke, S. Malone, F. Hegarty, J. Chem. Soc., Perkin Trans 2 1994, 807.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFOku7k%3D&md5=8ec0e107b3fa4af8e67143fa75364ffbCAS |
      (b) T. Barger, A. M. Wodtke, J. M. Bowman, Astrophys. J. 2003, 587, 841.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  Enthalphy of formation of HNC = 40 ± 1 kcal mol–1: A. Hansel, C. Schering, M. Glantschnig, W. Lindinger, E. E. Ferguson, J. Chem. Phys. 1998, 109, 1748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslegsLo%3D&md5=94ce32247ec8b8c61b5387cfd178b525CAS |

[32]  C. Wentrup, H. Briehl, P. Lorencak, U. J. Vogelbacher, H. W. Winter, A. Maquestiau, R. Flammang, J. Am. Chem. Soc. 1988, 110, 1337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtFWkt7Y%3D&md5=12b2720113c4d3993810dce8118d6d0fCAS |

[33]  (a) C. Larson, Y. Ji, P. Samartzis, A. M. Wodtke, S.-H. Lee, J. J.-M. Lin, C. Chaudhuri, T.-T. Ching, J. Chem. Phys. 2006, 125, 133302.
         | Crossref | GoogleScholarGoogle Scholar | 17029455PubMed |
      (b) A. Quinto-Hernandez, J. Doehla, W.-T. Huang, C.-Y. Lien, W.-Y. Lin, J. J.-M. Lin, A. M. Wodtke, J. Phys. Chem. A 2012, 116, 4695.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. Zhou, H. B. Schlegel, J. Phys. Chem. A 2009, 113, 9958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSgtb3M&md5=9e5886e1796da7574e52d0cd9770622dCAS | 19739680PubMed |

[35]  N. P. Gritsan, M. S. Platz, Chem. Rev. 2006, 106, 3844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVChsbg%3D&md5=829955a7a2e71dbaf892920fe79e3782CAS | 16967923PubMed |

[36]  (a) M. J. Travers, D. C. Cowels, E. P. Clifford, G. B. Ellison, J. Am. Chem. Soc. 1992, 114, 8699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFWhs70%3D&md5=075a825008cf0b65a8fc94880b748fceCAS |
      (b) N. R. Wijeratne, M. DaFonte, A. Ronemus, P. J. Wyss, D. Tahmassebi, P. G. Wenthold, J. Phys. Chem. A 2009, 113, 9467.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  C. Wentrup, Top. Curr. Chem. 1976, 62, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXls1Wg&md5=e2cf1d56d9298e8b1d7c5eb16d165b63CAS | 941142PubMed |

[38]  L. K. Dyall, Aust. J. Chem. 1975, 28, 2147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlvFagsr4%3D&md5=62dc524231f0471c3c285fa64755d48bCAS |

[39]  L. K. Dyall, P. A. S. Smith, Aust. J. Chem. 1990, 43, 997.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFKru74%3D&md5=199674a377c1a3c81eb6b4fcc7630548CAS |

[40]  D. Kvaskoff, P. Bednarek, L. George, S. Pankarakshan, C. Wentrup, J. Org. Chem. 2005, 70, 7947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1WhsLc%3D&md5=a3d270e4ae61d06c5f3b1f336e6b7e90CAS | 16277314PubMed |

[41]  C. Thétaz, C. Wentrup, J. Am. Chem. Soc. 1976, 98, 1258.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  A. Maltsev, T. Bally, M.-L. Tsao, M. S. Platz, A. Kuhn, M. Vosswinkel, C. Wentrup, J. Am. Chem. Soc. 2004, 126, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1yms7s%3D&md5=85c3e8b6329e2d05e414e20ba34b0b72CAS | 14709089PubMed |

[43]  N. M. Lan, R. Burgard, C. Wentrup, J. Org. Chem. 2004, 69, 2033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht12gt70%3D&md5=c669af3cc9912e9118ee517c4d23eb49CAS | 15058950PubMed |

[44]  C. Wentrup, W. D. Crow, Tetrahedron 1971, 27, 880.

[45]  C. Wentrup, N. M. Lan, A. Lukosch, P. Bednarek, D. Kvaskoff, Beilstein J. Org. Chem. 2013, 9, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFaqtbc%3D&md5=a40577eef216fc27d612e817b3590fccCAS | 23766786PubMed |

[46]  C. R. Kemnitz, W. L. Karney, W. T. Borden, J. Am. Chem. Soc. 1998, 120, 3499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit12lurs%3D&md5=e4d613faf7910a8e5723276bf65d88a5CAS |

[47]  The activation energy for thermolysis of 3-pyridyl azide in solution is ~30 kcal mol–1: L. K. Dyall, M. W. Wong, Aust. J. Chem. 1985, 38, 1045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1ers7k%3D&md5=f14f6f2e652acadcd29656db9e49a1c1CAS |

[48]  C. Wentrup, Acc. Chem. Res. 2011, 44, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFegu7s%3D&md5=f78694801b8c0c3c9299b61421afd3d4CAS | 21452850PubMed |

[49]  P. Bednarek, C. Wentrup, J. Am. Chem. Soc. 2003, 125, 9083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFKqsLs%3D&md5=889269d61a7333254de41001258187b8CAS | 15369365PubMed |

[50]  D. Kvaskoff, P. Bednarek, C. Wentrup, J. Org. Chem. 2010, 75, 1600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2rtbY%3D&md5=db800b984879029296222f3b95df774cCAS | 20131858PubMed |

[51]  C. Wentrup, Tetrahedron 1974, 30, 1301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltVCnsLc%3D&md5=ef8b7c6b4a4f34ee6664af335d172846CAS |

[52]  C. Wentrup, W. D. Crow, Tetrahedron 1970, 26, 3965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltV2ktr0%3D&md5=9ea56ca730b8e903ba2f03381f78c131CAS |

[53]  C. Wentrup, H.-W. Winter, J. Am. Chem. Soc. 1980, 102, 6159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvVKgs74%3D&md5=fe6b25809f7e9ab9f9f749c1d3419c55CAS |

[54]  A. McCluskey, C. Wentrup, J. Org. Chem. 2008, 73, 6265.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVWjt7w%3D&md5=369ee4e2e5eacf8e7db025477c9a00b7CAS | 18646825PubMed |

[55]  (a) V. G. Matveev, V. V. Dubikhin, G. M. Nazin, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1978, 27, 474.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) J. B. Pedley, R. D. Naylor, S. P. Kirby, Thermochemical Data of Organic Compounds 1986, 2nd edn (Chapman and Hall: New York, NY).

[56]  K. E. Lewis, D. F. McMillen, D. M. Golden, J. Phys. Chem. 1980, 84, 227.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  (a) S. Xu, M. C. Lin, J. Phys. Chem. B 2005, 109, 8368.
      (b) M. F. Lin, Y. T. Lee, C.-K. Ni, S. Xu, M. C. Lin, J. Chem. Phys. 2007, 126, 64310.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Fayet, L. Jounert, P. Rotureau, C. Adamo, J. Phys. Chem. A 2008, 112, 4054.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Qi, Q.-H. Lin, Y.-Y. Li, S.-P. Pang, R.-B. Zhang, J. Mol. Struct. Theochem. 2010, 961, 97.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. L. Hause, N. Herath, R. Zhu, M. C. Lin, A. G. Suits, Nat. Chem. 2011, 3, 932.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  (a) E. K. Fields, S. Meyerson, J. Am. Chem. Soc. 1967, 89, 724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXnsFOmsQ%3D%3D&md5=d454c7d66594553c6d367e623b9f9389CAS |
      (b) E. K. Fields, S. Meyerson, J. Am. Chem. Soc. 1967, 89, 3224.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  Y. A. Ibrahim, N. A. Al-Awadi, K. Kaul, Tetrahedron 2001, 57, 7377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFGhu7o%3D&md5=18c68cc441bf1075741d95bdbacd0327CAS |

[60]  J. D. Perez, D. A. Wunderlin, J. Org. Chem. 1987, 52, 3637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslOltbk%3D&md5=9976646531f37ff3e4a5d60367544aefCAS |

[61]  C. K. Lowe-Ma, R. A. Nissan, W. S. Wilson, J. Org. Chem. 1990, 55, 3755.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktVKhtr8%3D&md5=f07175d13c4a830a7c0c58ac7da71d0bCAS |

[62]  A. Chollet, Diploma Thesis: Contribution à l’Etude des Réarrangements en Phase Gazeuse de Carbènes et de Nitrènes Aromatiques et Hétéroaromatiques 1974, University of Lausanne, Switzerland.

[63]  R. H. Pierson, A. N. Fletcher, E. St Clair Gantz, Anal. Chem. 1956, 28, 1218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XntlSqtw%3D%3D&md5=22484dc8990fa4c265afeb36ebf42423CAS |

[64]  D. Kvaskoff, M. Vosswinkel, C. Wentrup, J. Am. Chem. Soc. 2011, 133, 5413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGjtLw%3D&md5=a7de98bb4ada1fc71a87e58aa4becb6bCAS | 21417327PubMed |

[65]  C. Wentrup, A. Reisinger, D. Kvaskoff, Beilstein J. Org. Chem. 2013, 9, 754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFaqtbY%3D&md5=0434ec9df9b94d5f9890ef83ded09374CAS | 23766787PubMed |

[66]  D. Kvaskoff, U. Mitschke, C. Addicott, P. Bednarek, J. Finnerty, C. Wentrup, Aust. J. Chem. 2009, 62, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVKqtr4%3D&md5=1212b94586c4920bd128c256095efd13CAS |

[67]  C. Addicott, H. Lüerssen, M. Kuzaj, D. Kvaskoff, C. Wentrup, J. Phys. Org. Chem. 2011, 24, 999.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFajt74%3D&md5=20bfcfd4d17690dbb04a4909fb4f82efCAS |

[68]  (a) Direct observation of C-cyclopentadienylidenemethanimines from benzotriazoles: In FVT: A. Maquestiau, D. Beugnies, R. Flammang, B. Freiermuth, C. Wentrup, Org. Mass Spectrom. 1990, 25, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlWnsr4%3D&md5=a7705f3382d88f38baef6f8cdfa71f6bCAS |
      (b) In matrix photolysis: M. Kiszka, I. R. Dunkin, J. Gebicki, H. Wang, J. Wirz, J. Chem. Soc. Perkin 2 2000, 2420.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Tomioka, N. Ichikawa, K. Komatsu, J. Am. Chem. Soc. 1992, 114, 8045.
         | Crossref | GoogleScholarGoogle Scholar |