Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Improved Mechanical Properties of Graphene Oxide/Poly(ethylene oxide) Nanocomposites by Dynamic Interfacial Interaction of Coordination

Chen Lin A , Yi-Tao Liu A and Xu-Ming Xie A B
+ Author Affiliations
- Author Affiliations

A Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

B Corresponding author. Email: xxm-dce@mail.tsinghua.edu.cn




Professor Xu-Ming Xie graduated with a B.Eng. degree from Shinshu University, Japan, in 1985. He received his M.Sc. and Ph.D. from the Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Japan, in 1987 and 1990, respectively. He has worked at Tsinghua University since 1992, and has been a full professor since 1999. His current research areas cover structure and properties of multi-polymer systems; confined crystallization and phase separation of polymer systems; polymer-assisted assembly of low-dimensional nanomaterials and their nanocomposites; polymer grafting and modification; and polymer gels and super-absorbent polymers. He has published more than 180 papers in peer-reviewed journals, and owns 16 patents.

Australian Journal of Chemistry 67(1) 121-126 https://doi.org/10.1071/CH13339
Submitted: 30 June 2013  Accepted: 22 September 2013   Published: 17 October 2013

Abstract

A simple and cost-effective strategy to create a strong interfacial interaction of coordination bonds in graphene oxide/poly(ethylene oxide) (GO/PEO) nanocomposites by divalent metal ions are demonstrated in this study. The strong interfacial interaction realizes efficient load transfer during the tensile process to significantly improve the mechanical properties of PEO. In addition, the dynamic interfacial interaction of coordination bonds minimizes the elongation loss. This strategy is applicable to a variety of polymer matrices containing coordination atoms, thus opens up a new opportunity for high-performance GO/polymer nanocomposites with significantly improved mechanical properties.


References

[1]  S. S. Ray, M. Okamoto, Prog. Polym. Sci. 2003, 28, 1539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslOhsbk%3D&md5=80f6814d7eb6613c7ac8645cc7c38a3fCAS |

[2]  J. Faucheu, C. Gauthiera, L. Chazeau, J.-Y. Cavaillé, V. Mellon, E. B. Lami, Polymer 2010, 51, 6.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SqsrnO&md5=b022110cf818577057cc6cbc9351ffa6CAS |

[3]  Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 2010, 35, 357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWrsbc%3D&md5=0f1bfdf437654c52dcc94baf177b43e3CAS |

[4]  N. G. Sahoo, S. Rana, J. W. Cho, L. Li, S. H. Chan, Prog. Polym. Sci. 2010, 35, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlGhtb4%3D&md5=75b95041c64069a32cd956b475c341cdCAS |

[5]  Z. Han, A. Fina, Prog. Polym. Sci. 2011, 36, 914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVKqs7s%3D&md5=f10fa4cdb4bd30977478565d6d6bdd07CAS |

[6]  Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 1755.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslelt7c%3D&md5=07ccf9f824e75ecc3505ac6d8c557761CAS |

[7]  A. C. Balazs, T. Emrick, T. P. Russell, Science 2006, 314, 1107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmtrnL&md5=98f1f8a179d27ac9e1fab1cdb9282f6bCAS | 17110567PubMed |

[8]  H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1KksLs%3D&md5=6427a88e1b4acdc33817210975154335CAS |

[9]  J. R. Potts, D. R. Dreyer, C. W. Bielawski, R. S. Ruoff, Polymer 2011, 52, 5.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Srtr3I&md5=9c8d2999a75cbfda5cd717223de4991aCAS |

[10]  R. Verdejo, M. M. Bernal, L. J. Romasanta, M. A. Lopez-Manchado, J. Mater. Chem. 2011, 21, 3301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1ynu7o%3D&md5=991423e43d26cffc8327f7b7a1b76c38CAS |

[11]  T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, Prog. Polym. Sci. 2010, 35, 1350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlens7jM&md5=e66b5712b2024ed477e3558bde91f905CAS |

[12]  Y.-T. Liu, X.-M. Xie, X.-Y. Ye, Chem. Commun. 2013, 49, 388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSmtL7F&md5=5356f648e62ae9208f79e097a290ce4dCAS |

[13]  Y.-T. Liu, Z. Tan, X.-M. Xie, Z.-F. Wang, X.-Y. Ye, Chem. Asian J. 2013, 8, 817.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSiu7k%3D&md5=c32887755519d177cad4af130feacc1bCAS | 23378295PubMed |

[14]  Z.-Q. Duan, Y.-T. Liu, X.-M. Xie, X.-Y. Ye, Chin. Chem. Lett. 2013, 24, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSiu78%3D&md5=3b4dd89ea5c49508bb1671f00e29eb3aCAS |

[15]  C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOrs7k%3D&md5=432c295f328a4ca26505d221d2cbdc23CAS | 18635798PubMed |

[16]  X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nat. Nanotechnol. 2008, 3, 491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlKnt7k%3D&md5=0f4c83b78e8b42835640d77b1d875b58CAS | 18685637PubMed |

[17]  A. A. Balandin, S. Ghosh, W.-Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.-N. Lau, Nano Lett. 2008, 8, 902.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFegsL4%3D&md5=fa7c69270138c7c751b4ee5bc086edd8CAS | 18284217PubMed |

[18]  D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsrvI&md5=86be07eb586424207c7d14964e8e3f7fCAS | 20023850PubMed |

[19]  H. B. Lee, A. V. Raghu, K. S. Yoon, H. M. Jeong, J. Macromol. Sci. B 2010, 49, 802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlagu7s%3D&md5=a3fc5b68c32fff0f19408858088b7e0fCAS |

[20]  Y. Matsuo, K. Tahara, Y. Sugie, Carbon 1996, 34, 672.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVWkt7k%3D&md5=ae8b53d1f4050c3ae507236dec234835CAS |

[21]  Y. Matsuo, K. Tahara, Y. Sugie, Carbon 1997, 35, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFCms7s%3D&md5=a53b83c6948059c924f4c0c8c16b0b08CAS |

[22]  Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Carbon 2009, 47, 3538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGjsrzK&md5=d620eb4286a23ae8717798e17e1b1937CAS |

[23]  G. Goncalves, P. A. A. P. Marques, A. B. Timmons, I. Bdkin, M. K. Singh, N. Emami, J. Gracio, J. Mater. Chem. 2010, 20, 9927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKjtL%2FM&md5=a97f34d5f9dbd21add1dd23e90256e46CAS |

[24]  J. Y. Jang, M. S. Kim, H. M. Jeong, C. M. Shin, Compos. Sci. Technol. 2009, 69, 186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCjtrnO&md5=5661b0aef45dc989d374293e42f69c5eCAS |

[25]  M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, J. Mater. Chem. 2009, 19, 7098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltLzO&md5=b75566c453323adcf23e2e07d6b3a1b4CAS |

[26]  J. Liu, Aust. J. Chem. 2011, 64, 1414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWjtLbP&md5=a79cea7311030a52ee6619c790cc01aaCAS |

[27]  Y. Huang, Y. Qin, Y. Zhou, H. Niu, Z.-Z. Yu, J.-Y. Dong, Chem. Mater. 2010, 22, 4096.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFGgu78%3D&md5=93dfcb971cfad993f8b0c28f3e5776bcCAS |

[28]  Z. Xu, C. Gao, Macromolecules 2010, 43, 6716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSmtr0%3D&md5=a9eee7e67ed445e9cedbc1557014a944CAS |

[29]  H. Yang, C. Shan, F. Li, Q. Zhang, D. Han, L. Niu, J. Mater. Chem. 2009, 19, 8856.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWqtL%2FO&md5=3e0cdf514d76756a97b2a071ab0a3e86CAS |

[30]  Y.-T. Liu, J.-M. Yang, X.-M. Xie, X.-Y. Ye, Mater. Chem. Phys. 2011, 130, 794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCls73J&md5=39a5f2290eca6963605077f1b24c33f9CAS |

[31]  Y.-T. Liu, Q.-P. Feng, X.-M. Xie, X.-Y. Ye, Carbon 2011, 49, 3371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslegt7k%3D&md5=bde9b3ab5d4610514b0eaad4688c3667CAS |

[32]  Y.-T. Liu, M. Dang, X.-M. Xie, Z.-F. Wang, X.-Y. Ye, J. Mater. Chem. 2011, 21, 18723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKhs7bL&md5=d49fffc50dbde27e2980d9f0641b954cCAS |

[33]  Y.-T. Liu, X.-D. Zhu, Z.-Q. Duan, X.-M. Xie, Chem. Commun. 2013, 49, 10305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFynsL%2FE&md5=b75aef97c549ceef9669f1811be4f9b5CAS |

[34]  N. Chen, X.-M. Xie, Acta Polym. Sin. 2013, 5, 635.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff, ACS Nano 2008, 2, 572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivV2hu78%3D&md5=6bbf21b2465ebc84e9fa52b057e3955eCAS | 19206584PubMed |

[36]  Y.-T. Liu, X.-M. Xie, X.-Y. Ye, Carbon 2011, 49, 3529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlaisLw%3D&md5=8e4a8756f05e6bab588243917d8bb868CAS |

[37]  J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J. M. D. Tascón, Langmuir 2008, 24, 10560.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCrurrK&md5=2c9ef141b823d93a9371304d2c068fedCAS | 18759411PubMed |

[38]  K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn 1986, pp. 231–233 (John Wiley & Sons: New York, NY).

[39]  D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFOqtrc%3D&md5=79b63951cae56e87c562e66630126c28CAS | 20731455PubMed |

[40]  S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVGkur4%3D&md5=77d686179d27638089cc35a0d1904f8aCAS |

[41]  X. Zhao, Q. Zhang, D. Chen, P. Lu, Macromolecules 2010, 43, 2357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Gms7w%3D&md5=cd5cf0b7b4630234b665757f4bd47796CAS |

[42]  Z. Shen, G. P. Simon, Y.-B. Cheng, Eur. Polym. J. 2003, 39, 1917.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFGhtLw%3D&md5=bed7fb3a440b250325ff732ef797bd6aCAS |

[43]  Q. Zhao, E. T. Samulski, Macromolecules 2003, 36, 6967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms12ksbw%3D&md5=8055bccee755e7e2ccde0430b0df4f76CAS |

[44]  L. Fan, C.-W. Nan, S. Zhao, Solid State Ion. 2003, 164, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1ahtrk%3D&md5=615a5d0d01695be81a5dd8be6d7a7d20CAS |