Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science

Platinum(iv) Chloride Complex Ions Adsorption on Activated Carbon Organosorb 10CO

Marek Wojnicki A C , Ewa Rudnik A , Robert P. Socha B and Krzysztof Fitzner A
+ Author Affiliations
- Author Affiliations

A AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Mickiewicza Avenue 30, 30-059 Krakow, Poland.

B Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.

C Corresponding author. Email:

Australian Journal of Chemistry 70(7) 769-775
Submitted: 22 September 2016  Accepted: 4 January 2017   Published: 10 February 2017


Kinetic studies on the recovery of platinum(iv) chloride complex ions from acidic solutions using commercially available activated carbon (AC) were carried out using spectrophotometric methods. The overall process obeyed first-order reaction model. The overall process is complex and consists of two steps: the first one is related to the reversible adsorption–desorption of PtIV complex and the second one is related to the reduction of PtIV complex on the AC surface. The first step of the overall process was limited by diffusion, whereas the second step ran under kinetic control. The activation energies of the individual reactions in both steps were determined and corresponded to 18.27, 7.85, and 31.2 kJ mol–1 for the adsorption, desorption, and reduction reactions, respectively. X-ray photoelectron spectroscopy results confirmed that the chemical reaction was related to the reduction of PtIV to PtII on the AC surface. The results show that the investigated AC can be applied for platinum recovery from highly diluted aqueous systems.


[1]  G. Survey, Minerals Yearbook, 2012, V. 3, Area Reports, International, Europe and Central Eurasia 2015 (U.S. Government Printing Office: Washington, DC).

[2]  P. J. Loferski, U.S. Geological Survey Minerals Yearbook 2014 (U.S. Geological Survey: Reston, VA).

[3]  C. Hagelüken, Platinum Met. Rev. 2012, 56, 29.
         | CrossRef |

[4]  M. Saternus, A. Fornalczyk, J. Willner, T. Ltd, in Metal 2015: 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 3–5 June 2015. 2015 pp. 1633–1638 (Tanger: Ostrava, CZ).

[5]  M. K. Jha, J. C. Lee, M. S. Kim, J. Jeong, B. S. Kim, V. Kumar, Hydrometallurgy 2013, 133, 23.
         | CrossRef | 1:CAS:528:DC%2BC3sXjtVegtbw%3D&md5=4bf4a609bb591a78a22bc3a6fd8cf2e2CAS |

[6]  H. G. Dong, J. C. Zhao, J. L. Chen, Y. D. Wu, B. J. Li, Int. J. Miner. Process. 2015, 145, 108.
         | CrossRef | 1:CAS:528:DC%2BC2MXhtVartbbO&md5=ddbf12ee99e7dd9dad223230c7ae26f9CAS |

[7]  C. W. Ammen, Recovery and Refining of Precious Metals 1997 (Springer: USA).

[8]  M. Wojnicki, M. Luty-Błocho, K. Mech, J. Grzonka, K. Fitzner, K. J. Kurzydowski, J. Flow Chem. 2015, 5, 22.
         | CrossRef |

[9]  M. Luty-Błocho, M. Wojnicki, K. Pacławski, K. Fitzner, Chem. Eng. J. 2013, 226, 46.
         | CrossRef |

[10]  M. Luty-Błocho, M. Wojnicki, J. Grzonka, K. J. Kurzydłowski, Arch. Metall. Mater. 2014, 59, 509.
         | CrossRef |

[11]  M. K. Jha, D. Gupta, J. C. Lee, V. Kumar, J. Jeong, Hydrometallurgy 2014, 142, 60.
         | CrossRef | 1:CAS:528:DC%2BC2cXht1Kit78%3D&md5=2b0e6d81bc103872d8bd3b6ca002e0fcCAS |

[12]  S. V. Bandekar, P. M. Dhadke, Sep. Purif. Technol. 1998, 13, 129.
         | CrossRef | 1:CAS:528:DyaK1cXislajuro%3D&md5=97657a6917b5018dc8d3d6d32c433808CAS |

[13]  A. T. Yordanov, J. T. Mague, D. Max Roundhill, Inorg. Chim. Acta 1995, 240, 441.
         | CrossRef | 1:CAS:528:DyaK28XhtVChurc%3D&md5=b4e64b4b4b5cb5b5a1895d433294c26eCAS |

[14]  A. N. Nikoloski, K. L. Ang, Miner. Process. Extr. Metall. Rev. 2014, 35, 369.
         | CrossRef | 1:CAS:528:DC%2BC3sXitVWjsrrJ&md5=f3b8de4917bd0092209907295bfa34d7CAS |

[15]  S. Aktas, M. H. Morcali, Trans. Nonferrous Met. Soc. China 2011, 21, 2554.
         | CrossRef | 1:CAS:528:DC%2BC3sXosl2rsr4%3D&md5=84c23a9a599a324247e1011b56438f38CAS |

[16]  L. D. Ageeva, N. A. Kolpakova, T. V. Kovyrkina, N. P. Potsyapun, A. S. Buinovskii, J. Anal. Chem. 2001, 56, 137.
         | CrossRef | 1:CAS:528:DC%2BD3MXitVCls7g%3D&md5=86dc60670d824689124c523c0752e238CAS |

[17]  M. Wojnicki, K. Pacławski, R. P. Socha, K. Fitzner, Trans. Nonferrous Met. Soc. China 2013, 23, 1147.
         | CrossRef | 1:CAS:528:DC%2BC3sXnvVOitrs%3D&md5=4deafe8a083eaa5f2a0801c836322e3fCAS |

[18]  M. Wojnicki, E. Rudnik, M. Luty-Błocho, R. P. Socha, Z. Pędzich, K. Fitzner, K. Mech, Aust. J. Chem. 2016, 69, 254.
         | CrossRef | 1:CAS:528:DC%2BC28Xkt1Cks7c%3D&md5=c23032b230179730dd18a27cbb97dd61CAS |

[19]  P. A. Simonov, A. V. Romanenko, I. P. Prosvirin, E. M. Moroz, A. I. Boronin, Carbon 1997, 35, 73.
         | CrossRef | 1:CAS:528:DyaK2sXhtFCms78%3D&md5=99f34f64ae739406b2f05feb9a72cc46CAS |

[20]  V. Korobov, V. Ochkov, Chemical Kinetics with Mathcad and Maple 2011 (Springer: Vienna).

[21]  J. D. Evans, Straightforward Statistics for the Behavioral Sciences 1996 (Brooks/Cole Pub. Co.: Pacific Grove, CA).

[22]  M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering 2003 (McGraw-Hill Higher Education: New York, NY).

[23]  V. Stavila, J. Volponi, A. M. Katzenmeyer, M. C. Dixon, M. D. Allendorf, Chem. Sci. 2012, 3, 1531.
         | CrossRef | 1:CAS:528:DC%2BC38XkvVKru7k%3D&md5=766a6b8b32445be34ca7d963b021c56eCAS |

[24]  S. Chen, R. Xu, H. Huang, F. Yi, X. Zhou, H. Zeng, J. Mater. Sci. 2007, 42, 9572.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtVOitrnK&md5=29d1df8fa6b363011fa05b9aa234d689CAS |

Rent Article (via Deepdyve) Export Citation