Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effective Dissolution of Biomass in Ionic Liquids by Irradiation of Non-Thermal Atmospheric Pressure Plasma

Kosuke Kuroda A D , Kai Shimomura A , Tatsuo Ishijima B , Kenji Takada A , Kazuaki Ninomiya C and Kenji Takahashi A D
+ Author Affiliations
- Author Affiliations

A Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

B Research Center for Sustainable Energy & Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

C Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

D Corresponding authors. Email: kkuroda@staff.kanazawa-u.ac.jp; ktkenji@staff.kanazawa-u.ac.jp

Australian Journal of Chemistry 70(6) 731-734 https://doi.org/10.1071/CH16554
Submitted: 30 September 2016  Accepted: 3 November 2016   Published: 29 November 2016

Abstract

Biomass was dissolved in ionic liquids under non-thermal atmospheric pressure plasma irradiation. On plasma irradiation, the amount of dissolved biomass in the ionic liquids increased from 15 to 29 mg for bagasse and from 26 to 36 mg for Japanese cedar. The high solubility was attributed to the deconstruction of the lignin network by active chemical species generated by the plasma. Selective extraction of cellulose from biomass was observed under plasma irradiation.


References

[1]  E. Adler, Wood Sci. Technol. 1977, 11, 169.
         | CrossRef | 1:CAS:528:DyaE1cXisVeruw%3D%3D&md5=82a838ccc04dfe73586750d79d331a1eCAS | open url image1

[2]  P. Oinonen, L. Zhang, M. Lawoko, G. Henriksson, Phytochemistry 2015, 111, 177.
         | CrossRef | 1:CAS:528:DC%2BC2cXhvVOntLjO&md5=ee47c75229413bc6e63e84f20c3a3c0eCAS | open url image1

[3]  T. Kondo, J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 717.
         | CrossRef | 1:CAS:528:DyaK2sXhsFKhs7g%3D&md5=f00fa4831513ad0aa99b39719629b886CAS | open url image1

[4]  Y. Nishiyama, P. Langan, H. Chanzy, J. Am. Chem. Soc. 2002, 124, 9074.
         | CrossRef | 1:CAS:528:DC%2BD38Xlt1eqsLk%3D&md5=e8b7d814a5804f6502e969e9aca303f0CAS | open url image1

[5]  A. Isogai, R. H. Atalla, Cellulose 1998, 5, 309.
         | CrossRef | 1:CAS:528:DyaK1MXhvFyhtrc%3D&md5=58d20f35b33223d5e9f90d87e0d7fb91CAS | open url image1

[6]  C. L. McCormick, P. A. Callais, B. H. Hutchinson, Macromolecules 1985, 18, 2394.
         | CrossRef | 1:CAS:528:DyaL2MXmtFOis7Y%3D&md5=5e961dda15ed30349c0169fcfdce4c26CAS | open url image1

[7]  H. Chanzy, A. Peguy, S. Chaunis, P. Monzie, J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 1137.
         | CrossRef | 1:CAS:528:DyaL3cXktV2kt7o%3D&md5=b6e90685042ccf25adc22e1e41941390CAS | open url image1

[8]  R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
         | CrossRef | 1:CAS:528:DC%2BD38XivVOmt70%3D&md5=f0ffe87be9045c50cc3190b94e5e7d56CAS | open url image1

[9]  H. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519.
         | CrossRef | 1:CAS:528:DC%2BC38XhsVajsrw%3D&md5=92eb068a77105ce27cd25e12be11b53dCAS | open url image1

[10]  Y. Fukaya, A. Sugimoto, H. Ohno, Biomacromolecules 2006, 7, 3295.
         | CrossRef | 1:CAS:528:DC%2BD28XhtF2gt7zL&md5=46974fa40cb9ba612f64dcf369ab01ceCAS | open url image1

[11]  M. Abe, Y. Fukaya, H. Ohno, Green Chem. 2010, 12, 1274.
         | CrossRef | 1:CAS:528:DC%2BC3cXotlyrurY%3D&md5=d043295614f125cada816cb4040fcd9fCAS | open url image1

[12]  K. Kuroda, Y. Fukaya, T. Yamada, H. Ohno, Anal. Methods 2015, 7, 1719.
         | CrossRef | 1:CAS:528:DC%2BC2cXitFegsb%2FJ&md5=9d59c4c9876df2e27f9cc8ce16e75d8cCAS | open url image1

[13]  M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
         | CrossRef | 1:CAS:528:DC%2BD1MXovFSisr0%3D&md5=92323f6e591481c1a1481bbb767093dfCAS | open url image1

[14]  I. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D. S. Argyropoulos, J. Agric. Food Chem. 2007, 55, 9142.
         | CrossRef | open url image1

[15]  K. Ohira, Y. Abe, M. Kawatsura, K. Suzuki, M. Mizuno, Y. Amano, T. Itoh, ChemSusChem 2012, 5, 388.
         | CrossRef | 1:CAS:528:DC%2BC38XhtFSmsLo%3D&md5=080f8f98e5828d9fdc38aa4ae33ceb63CAS | open url image1

[16]  H. Liu, K. L. Sale, B. M. Holmes, B. A. Simmons, S. Singh, J. Phys. Chem. B 2010, 114, 4293.
         | CrossRef | 1:CAS:528:DC%2BC3cXjtVymsro%3D&md5=22776e83a5d58f6c187999722308c9efCAS | open url image1

[17]  K. Yoshioka, T. Yamada, H. Ohno, H. Miyafuji, RSC Adv. 2015, 5, 72405.
         | CrossRef | 1:CAS:528:DC%2BC2MXhtlOgtrrM&md5=82fc9d2e0859f958db64ad96e2604623CAS | open url image1

[18]  A. Brandt, J. Gräsvik, J. P. Hallett, T. Welton, Green Chem. 2013, 15, 550.
         | CrossRef | 1:CAS:528:DC%2BC3sXivFOlurw%3D&md5=32306f7c37bbf25bdfd1f84a986557cbCAS | open url image1

[19]  W. Y. Li, N. Sun, B. Stoner, X. Y. Jiang, X. M. Lu, R. D. Rogers, Green Chem. 2011, 13, 2038.
         | CrossRef | 1:CAS:528:DC%2BC3MXpslGhtrc%3D&md5=86f8d9f13649f437f92ca25950a7c5e4CAS | open url image1

[20]  M. T. Clough, K. Geyer, P. A. Hunt, J. Mertes, T. Welton, Phys. Chem. Chem. Phys. 2013, 15, 20480.
         | CrossRef | 1:CAS:528:DC%2BC3sXhslOmtr%2FO&md5=df407c62c2cd1638921de4f829429865CAS | open url image1

[21]  M. Abe, S. Yamanaka, H. Yamada, T. Yamada, H. Ohno, Green Chem. 2015, 17, 4432.
         | CrossRef | 1:CAS:528:DC%2BC2MXhtFWjur3I&md5=02321c9dd7227464373687eea601e4b5CAS | open url image1

[22]  M. Abe, Y. Fukaya, H. Ohno, Chem. Commun. 2012, 48, 1808.
         | CrossRef | 1:CAS:528:DC%2BC38XmsVWrsg%3D%3D&md5=0275920f6b02600e2f906972f725a309CAS | open url image1

[23]  A. Wu, J. M. Lauzon, I. Andriani, B. R. James, RSC Adv. 2014, 4, 17931.
         | CrossRef | 1:CAS:528:DC%2BC2cXmtlSmtrs%3D&md5=1cfedc876921b99297aa8e78d315cb01CAS | open url image1

[24]  F. Tochikubo, Y. Furuta, S. Uchida, T. Watanabe, Jpn. J. Appl. Phys. 2006, 45, 2743.
         | CrossRef | 1:CAS:528:DC%2BD28XktVOisbg%3D&md5=69e5fc9c5fa768702601271fcab46ca2CAS | open url image1

[25]  S. Kongmany, H. Matsuura, M. Furuta, S. Okuda, K. Imamura, Y. Maeda, J. Phys.: Conf. Ser. 2013, 441, 012006.
         | CrossRef | open url image1

[26]  Y. Himeno, Y. Ogura, T. Shirafuji, J. Phys.: Conf. Ser. 2014, 518, 012021.
         | CrossRef | open url image1

[27]  T. Ishijima, H. Hotta, H. Sugai, M. Sato, Appl. Phys. Lett. 2007, 91, 121501.
         | CrossRef | open url image1

[28]  K. Kuroda, T. Ishijima, T. Kaga, K. Shiomomura, K. Ninomiya, K. Takahashi, Chem. Lett. 2015, 44, 1473.
         | CrossRef | 1:CAS:528:DC%2BC28XotVertbo%3D&md5=77f85869f8e5455bcd5fbbd19e6b3de6CAS | open url image1

[29]  T. Ishijima, R. Saito, H. Sugihara, H. Toyoda, Trans. Mater. Res. Soc. Jpn. 2011, 36, 475.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtl2iurvI&md5=461ab689df9725876525d1ec58f4da5fCAS | open url image1

[30]  T. Ishijima, K. Nosaka, Y. Tanaka, Y. Uesugi, Y. Goto, H. Horibe, Appl. Phys. Lett. 2013, 103, 142101.
         | CrossRef | open url image1

[31]  O. Höfft, F. Endres, Phys. Chem. Chem. Phys. 2011, 13, 13472.
         | CrossRef | open url image1

[32]  M. Yu, L. Y. Zhai, Q. Zhou, C. P. Li, X. L. Zhang, Appl. Catal., A 2012, 419–420, 53.
         | CrossRef | open url image1

[33]  D. Behar, C. Gonzalez, P. Neta, J. Phys. Chem. A 2001, 105, 7607.
         | CrossRef | 1:CAS:528:DC%2BD3MXltVSitL8%3D&md5=f16efaf95dfd841844b822d014295169CAS | open url image1

[34]  S. Mukasa, S. Nomura, H. Toyota, T. Maehara, F. Abe, A. Kawashima, J. Appl. Phys. 2009, 106, 113302.
         | CrossRef | open url image1

[35]  Y. Mizukoshi, R. Katagiri, H. Horibe, S. Hatanaka, M. Asano, Y. Nishimura, Chem. Lett. 2015, 44, 495.
         | CrossRef | 1:CAS:528:DC%2BC2MXmvFelt7o%3D&md5=2bee9b377e32c01d00f2154aa1e1b891CAS | open url image1

[36]  G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data 1988, 17, 513.
         | CrossRef | 1:CAS:528:DyaL1cXlvFyisLc%3D&md5=27e0eed96f52601481ea94aa8dc09be7CAS | open url image1

[37]  P. Neta, R. E. Huie, A. B. Ross, J. Phys. Chem. Ref. Data 1988, 17, 1027.
         | CrossRef | 1:CAS:528:DyaL1cXlvFyitro%3D&md5=2c853de7a4b10fbeb3145b279851fb07CAS | open url image1

[38]  A. Suliter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of Structural Carbohydrates and Lignin in Biomass 2008 (National Renewable Energy Laboratory: Golden, CO).

[39]  K. Ninomiya, S. Omote, C. Ogino, K. Kuroda, M. Noguchi, T. Endo, R. Kakuchi, N. Shimizu, K. Takahashi, Bioresour. Technol. 2015, 189, 203.
         | CrossRef | 1:CAS:528:DC%2BC2MXmsFylur8%3D&md5=a95386e9676ba46f8a854464cbec0ee2CAS | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (137 KB) Export Citation