Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science

Limitations in Electrochemical Determination of Mass-Transport Parameters: Implications for Quantification of Electrode Kinetics Using Data Optimisation Methods

Elena Mashkina A , Alan M. Bond A B and Alexandr N. Simonov A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and the ARC Centre of Excellence in Electromaterials Science, Monash University, Clayton, Vic. 3800, Australia.

B Corresponding authors. Email:;

Australian Journal of Chemistry -
Submitted: 5 May 2017  Accepted: 4 June 2017   Published online: 29 June 2017


Voltammetric quantification of the electrode kinetics for the quasi-reversible reaction CH17241_IE1.gif requires detailed experiment–theory comparisons. Ideally, predicted data derived from the theoretical model are fitted to the experimental data by adjusting the reversible potential (E0), heterogeneous electron transfer rate constant at E0 (k0), and charge transfer coefficient α, with mass-transport and other parameters exactly known. However, parameters relevant to mass transport that include electrode area (A), diffusion coefficient (D), and concentration (c), are usually subject to some uncertainty. Herein, we examine the consequences of having different combinations of errors present in A, D, and c in the estimation of E0, k0, and α on the basis of the a.c. (alternating current) voltammetric experiment–theory comparisons facilitated by the use of a computer-assisted parameter optimisation algorithm. In most cases, experimentally reasonable errors (<10 %) in the mass-transport parameters do not introduce significant errors in recovered E0, k0, and α values. However, a pernicious situation may emerge when a slight overestimation of A, D or c is included in the model and results in erroneous identification of a reversible redox process as a quasi-reversible one with a report of apparently quantifiable kinetic parameters k0 and α.


[1]  R. S. Nicholson, I. Shain, Anal. Chem. 1964, 36, 706.
         | CrossRef | 1:CAS:528:DyaF2cXktV2ms7s%3D&md5=d26dc31bb86f1bd2f6ec880aa40fe9a0CAS | open url image1

[2]  R. S. Nicholson, Anal. Chem. 1965, 37, 1351.
         | CrossRef | 1:CAS:528:DyaF28XisFSksQ%3D%3D&md5=24ea942e94bd73847c501eceefc416c4CAS | open url image1

[3]  A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications (2nd edn) 2001 (John Wiley & Sons, Inc.: New York, NY).

[4]     (a) C. J. Miller, in Physical Electrochemistry, Principles, Methods and Applications (Ed. I. Rubinstein) 1995, pp. 27–79 (Marcel Dekker: New York, NY).
      (b) N. S. Hush, J. Electroanal. Chem. 1999, 470, 170.
         | CrossRef | open url image1

[5]  (a) A. M. Bond, N. W. Duffy, S.-X. Guo, J. Zhang, D. Elton, Anal. Chem. 2005, 77, 186A.
         | CrossRef | 1:CAS:528:DC%2BD2MXkslamu70%3D&md5=d5a49f0b782dbc4110e71bc8ce5e0925CAS | open url image1
      (b) A. M. Bond, D. Elton, S. Guo, E. A. Mashkina, A. N. Simonov, J. Zhang, Electrochem. Commun. 2015, 57, 78.
         | CrossRef | open url image1

[6]  A. M. Bond, E. A. Mashkina, A. N. Simonov, in Developments in Electrochemistry: Science Inspired by Martin Fleischmann (Eds D. Pletcher, Z.-Q. Tian, D. E. Williams) 2014, pp. 21–47 (John Wiley & Sons, Ltd.: Chichester, UK).

[7]  (a) R. L. McCreery, Chem. Rev. 2008, 108, 2646.
         | CrossRef | 1:CAS:528:DC%2BD1cXnt1Wjsb8%3D&md5=39657dc283838a5b976c2506937c3efbCAS | open url image1
      (b) A. M. Bond, N. W. Duffy, D. Elton, B. D. Fleming, Anal. Chem. 2009, 81, 8801.
         | CrossRef | open url image1
         (c) R. G. Compton, C. E. Banks, Understanding Voltammetry (2nd edn) 2011 (Imperial College Press: London).
      (d) S. C. S. Lai, A. N. Patel, K. McKelvey, P. R. Unwin, Angew. Chem. Int. Ed. 2012, 124, 5501.
         | CrossRef | open url image1

[8]  A. N. Simonov, G. P. Morris, E. A. Mashkina, B. Bethwaite, K. Gillow, R. E. Baker, D. J. Gavaghan, A. M. Bond, Anal. Chem. 2014, 86, 8408.
         | CrossRef | 1:CAS:528:DC%2BC2cXhtFOqtb3P&md5=cfd7af05578ee5d893479d44c7f8d6abCAS | open url image1

[9]  (a) A. N. Simonov, W. Grosse, E. A. Mashkina, B. Bethwaite, J. Tan, D. Abramson, G. G. Wallace, S. E. Moulton, A. M. Bond, Langmuir 2014, 30, 3264.
         | CrossRef | 1:CAS:528:DC%2BC2cXjtlSjsrw%3D&md5=f22b2425a8686da2bfc5d961cbd9d722CAS | open url image1
      (b) E. A. Mashkina, A. N. Simonov, A. M. Bond, J. Electroanal. Chem. 2014, 732, 86.
         | CrossRef | open url image1
      (c) A. N. Simonov, J. F. Boas, M. A. Skidmore, E. A. Mashkina, C. M. Forsyth, M. Bown, A. M. Bond, Inorg. Chem. 2015, 54, 4292.
         | CrossRef | open url image1

[10]  J. Janisch, A. Ruff, B. Speiser, C. Wolff, J. Zigelli, S. Benthin, V. Feldmann, H. A. Mayer, J. Solid State Electrochem. 2011, 15, 2083.and references therein
         | CrossRef | 1:CAS:528:DC%2BC3MXht12gsbnJ&md5=cd478d7751d5310602d6da1173af5c46CAS | open url image1

[11]  G. P. Morris, A. N. Simonov, E. A. Mashkina, R. Bordas, K. Gillow, R. E. Baker, D. J. Gavaghan, A. M. Bond, Anal. Chem. 2013, 85, 11780.
         | CrossRef | 1:CAS:528:DC%2BC3sXhs1ygsLnP&md5=6ded27654298205f59846e574e97caa6CAS | open url image1

[12]  T. Peachey, E. Mashkina, C.-Y. Lee, C. Enticott, D. Abramson, A. M. Bond, D. Elton, D. J. Gavaghan, G. P. Stevenson, G. F. Kennedy, Philos. Trans. R. Soc. A 2011, 369, 3336.and references therein.
         | CrossRef | 1:CAS:528:DC%2BC3MXht1eqsrbL&md5=f852fda469130ab650b9e5e4560ba13bCAS | open url image1

[13]  G. F. Kennedy, A. M. Bond, A. N. Simonov, Curr. Opin. Electrochem. 2017, 1, 140.
         | CrossRef | open url image1

[14]  ElchSoft Simulation Software and Experience 2011. Available at

[15]  M. C. Buzzeo, R. G. Evans, R. G. Compton, ChemPhysChem 2004, 5, 1106.
         | CrossRef | 1:CAS:528:DC%2BD2cXnsVejtL8%3D&md5=338c99576a633e7a59708ef57b90a582CAS | open url image1

[16]  K. B. Oldham, J. C. Myland, A. M. Bond, Electrochemical Science and Technology: Fundamentals and Applications 2012 (John Wiley & Sons, Inc.: Chichester, UK).

[17]  K. Ngamchuea, S. Eloul, K. Tschulik, R. G. Compton, J. Solid State Electrochem. 2014, 18, 3251.
         | CrossRef | 1:CAS:528:DC%2BC2cXhvVGqs7nO&md5=bf60b1127b7a32f95908ae164352f579CAS | open url image1

[18]  A. N. Simonov, E. Mashkina, P. J. Mahon, K. B. Oldham, A. M. Bond, J. Electroanal. Chem. 2015, 744, 110.
         | CrossRef | 1:CAS:528:DC%2BC2MXjsVanu7s%3D&md5=07eadff2971522054bfd1cbbc7edcaaaCAS | open url image1

[19]  C. L. Bentley, A. M. Bond, A. F. Hollenkamp, P. J. Mahon, J. Zhang, in Electrochemistry in Ionic Liquids (Ed. A. A. J. Torriero) 2015, Vol. 1, Ch. 5, pp. 143–168 (Springer International Publishing: Cham, Switzerland).

[20]  J. C. Myland, K. Oldham, J. Solid State Electrochem. 2014, 18, 3259.
         | CrossRef | 1:CAS:528:DC%2BC2cXhvFShu7zL&md5=60bdd8ee0e71b2771f659f94b6bc077fCAS | open url image1

[21]  A. N. Simonov, G. P. Morris, E. A. Mashkina, B. Bethwaite, K. Gillow, R. E. Baker, D. J. Gavaghan, A. M. Bond, Anal. Chem. 2016, 88, 4724.
         | CrossRef | 1:CAS:528:DC%2BC28XltlOns7o%3D&md5=8140754e94ed77fd8b66b3e352cfbc8aCAS | open url image1

[22]  J. Li, C. L. Bentley, A. M. Bond, J. Zhang, Anal. Chem. 2016, 88, 2367.
         | CrossRef | 1:CAS:528:DC%2BC28XpsFahug%3D%3D&md5=c4587d8b87d480b647b74ca5e8ff9941CAS | open url image1

Export Citation

View Altmetrics