Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Further, Small-Molecule Pyrolysis Products Derived from Chitin*

Maryam Nikahd A , Jiri Mikusek A , Martin G. Banwell https://orcid.org/0000-0002-0582-475X A B D , Li-Juan Yu C , Michelle L. Coote C and Michael G. Gardiner A
+ Author Affiliations
- Author Affiliations

A Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.

B Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China.

C ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.

D Corresponding author. Email: Martin.Banwell@anu.edu.au

Australian Journal of Chemistry 73(12) 1187-1196 https://doi.org/10.1071/CH20172
Submitted: 29 May 2020  Accepted: 6 July 2020   Published: 6 August 2020

Abstract

In an ongoing study of the products formed on pyrolysis of chitin (4) under a range of conditions, we now detail the isolation and characterisation of the crystalline and hitherto undetected pyridine N-oxide 18 and enamide 19. Pathways for the formation of these products have been proposed and subjected to both experimental and computational assessment.


References

[1]  (a) J. S. Luterbacher, D. M. Alonso, J. A. Dumesic, Green Chem. 2014, 16, 4816.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) N. Brun, P. Hesemann, D. Esposito, Chem. Sci. 2017, 8, 4724.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-V. Bomtempo, F. C. Alves, F. de Almeida Oroski, Faraday Discuss. 2017, 202, 213.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Lie, P. Ortiz, R. Vendamme, K. Vanbroekhoven, T. J. Farmer, Ind. Eng. Chem. Res. 2019, 58, 15945.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. E. Camp, ChemSusChem 2018, 11, 3048.
         | Crossref | GoogleScholarGoogle Scholar | 30044553PubMed |

[3]  https://cen.acs.org/business/biobased-chemicals/New-solvent-Cyrene-takes-NMP/97/i22 (accessed 13 May 2020).

[4]  (a) For some representative reports, see: X. Chen, Y. Gao, L. Wang, H. Chen, N. Yan, ChemPlusChem 2015, 80, 1565.
         | Crossref | GoogleScholarGoogle Scholar | 31973387PubMed |
      (b) X. Gao, X. Chen, J. Zhang, W. Guo, F. Jin, N. Yan, ACS Sustain. Chem. & Eng. 2016, 4, 3912.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Liu, H. Zhang, R. Xiao, S. Wu, Carbohydr. Polym. 2017, 156, 118.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. J. Hülsey, H. Yang, N. Yan, ACS Sustain. Chem. & Eng. 2018, 6, 5694.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) P. Zhang, H. Hu, H. Tang, Y. Yang, H. Liu, Q. Lu, X. Li, N. Worasuwannarak, H. Yao, Renew. Energy 2019, 139, 730.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) N. Yan, X. Chen, Nature 2015, 524, 155.
         | Crossref | GoogleScholarGoogle Scholar | 26268177PubMed |
      (b) A. Jardine, S. Sayed, Curr. Opin. Green Sustainable Chem. 2016, 2, 34.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. Nikahd, J. Mikusek, L.-J. Yu, M. L. Coote, M. G. Banwell, C. Ma, M. G. Gardiner, J. Org. Chem. 2020, 85, 4583.
         | Crossref | GoogleScholarGoogle Scholar | 32019306PubMed |

[7]  J. W. Bogart, A. A. Bowers, Org. Biomol. Chem. 2019, 17, 3653.
         | Crossref | GoogleScholarGoogle Scholar | 30849157PubMed |

[8]  (a) For examples of efforts to exploit certain chitin pyrolysis products as starting points in chemical synthesis programs, see: Y. Liu, C. Stähler, J. N. Murphy, B. J. Furling, F. M. Kerton, ACS Sustain. Chem. & Eng. 2017, 5, 4916.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T. T. Pham, X. Chen, N. Yan, J. A. Sperry, Monatsh. Chem. 2018, 149, 857.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. D. Sadiq, X. Chen, N. Yan, J. Sperry, ChemSusChem 2018, 11, 532.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. T. Pham, G. Gözaydin, T. Söhnel, N. Yan, J. Sperry, Eur. J. Org. Chem. 2019, 1355.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. T. Pham, X. Chen, T. Söhnel, N. Yan, J. Sperry, Green Chem. 2020, 22, 1978.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. Padovan, H. Kobayashi, A. Fukuoka, ChemSusChem 2020,
         | Crossref | GoogleScholarGoogle Scholar | 32410361PubMed |

[10]  (a) T. Kubota, H. Miyazaki, Bull. Chem. Soc. Jpn. 1966, 39, 2057.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. Rabinsohn, A. J. Acher, D. Shapiro, J. Org. Chem. 1973, 38, 202.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Puszko, K. Laihia, E. Kolehmainen, Z. Talik, Struct. Chem. 2013, 24, 333.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) A. E. Goetz, N. K. Garg, J. Org. Chem. 2014, 79, 846.
         | Crossref | GoogleScholarGoogle Scholar | 24410270PubMed |
      (b) T. C. McMahon, J. M. Medina, Y.-F. Yang, B. J. Simmons, K. N. Houk, N. K. Garg, J. Am. Chem. Soc. 2015, 137, 4082.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. E. Goetz, T. K. Shah, N. K. Garg, Chem. Commun. 2015, 51, 34.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. K. Thompson, T. R. Hoye, J. Am. Chem. Soc. 2019, 141, 19575.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  N. Mariet, M. Ibrahim-Ouali, J.-L. Parrain, M. Santelli, J. Mol. Struct. THEOCHEM 2004, 679, 53.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) A. van der Kaaden, J. J. Boon, J. W. de Leeuw, F. de Lange, P. J. W. Schuyl, H.-R. Schulten, U. Bahr, Anal. Chem. 1984, 56, 2160.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Bierstedt, B. A. Staniewicz, D. E. G. Briggs, R. P. Evershed, Analyst 1998, 123, 139.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  O. Novotny, K. Cejpek, J. Velisek, Czech J. Food Sci. 2007, 25, 119.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Unpublished observations.

[16]  S. V. Ley, D. K. Baeschlin, D. J. Dixon, A. C. Foster, S. J. Ince, H. W. M. Priepke, D. J. Reynolds, Chem. Rev. 2001, 101, 53.
         | Crossref | GoogleScholarGoogle Scholar | 11712194PubMed |

[17]  I. C. S. Wan, M. D. Witte, A. J. Minnaard, Org. Lett. 2019, 21, 7669.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  S. Youssif, ARKIVOC 2001, 242.

[19]  R. Andreozzi, A. Insola, V. Caprio, M. G. D’Amore, Water Res. 1991, 25, 655.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Ozone can be generated thermally from air in the presence of metal oxides: A. N. Romanov, Y. N. Fattakhova, Y. N. Rufov, Khim. Fiz. 1998, 17, 85.

[21]  The thermal production of hydrogen peroxide from oxygen and certain organic compounds has been reported: P. A. Clapp, N. Du, D. F. Evans, J. Chem. Soc., Faraday Trans. 1990, 86, 2587.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Shiramizu, F. D. Toste, Angew. Chem. Int. Ed. 2012, 51, 8082.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  D. Aragao, J. Aishima, H. Cherukuvada, R. Clarken, M. Clift, N. P. Cowieson, D. J. Ericsson, C. L. Gee, S. Macedo, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Rostan, R. Williamson, T. T. Caradoc-Davies, J. Synchrotron Radiat. 2018, 25, 885.
         | Crossref | GoogleScholarGoogle Scholar | 29714201PubMed |

[26]  CrysAlis PRO Version 1.171.37.35h 2015 (Agilent Technologies: Oxfordshire, UK).

[27]  G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.

[28]  G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.

[29]  Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  I. Alecu, J. Zheng, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2010, 6, 2872.
         | Crossref | GoogleScholarGoogle Scholar | 26616087PubMed |

[31]  L. A. Curtiss, K. Raghavachari, P. C. Redfern, A. G. Baboul, J. A. Pople, Chem. Phys. Lett. 1999, 314, 101.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision C.01 2016 (Gaussian, Inc.: Wallingford, CT).

[33]  MOLPRO is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklaß, D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, M. Welborn.