Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW (Open Access)

History and fundamentals of molecular photochromism

David Jago https://orcid.org/0000-0002-8696-5545 A , Emma E. Gaschk https://orcid.org/0000-0001-5645-2530 A and George A. Koutsantonis https://orcid.org/0000-0001-8755-3596 A *
+ Author Affiliations
- Author Affiliations

A Chemistry, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia.

* Correspondence to: george.koutsantonis@uwa.edu.au

Handling Editor: Curt Wentrup

Australian Journal of Chemistry - https://doi.org/10.1071/CH23115
Submitted: 20 June 2023  Accepted: 2 August 2023   Published online: 6 September 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution 4.0 International License (CC BY)

Abstract

Photochromic molecules reversibly change their colour upon exposure to light. The increasing need for smart materials in the real world, coupled with progress in synthetic chemistry, fast spectroscopic techniques, and theoretical power in research laboratories, have seen research in organic photochromism accelerate over the past few decades. In this Primer Review, the topic of organic photochromism is introduced. The fundamental concepts and histories are given to contextualise this field. Moreover, key photochromic molecules and selected applications are showcased to provide the interested reader with an entry to this fascinating field of science and emerging technology.

Keywords: molecular devices, nanotechnology, organic, photochemistry, photochromism, photoswitch, Primer Review, smart materials, switching.


References

[1]  Pianowski ZL, editor. Molecular Photoswitches: Chemistry, Properties, and Applications. Weinheim, Germany: Wiley‐VCH GmbH; 2022.

[2]  Durr H, Bouas-Laurent H, editors. Photochromism: Molecules and Systems. Amsterdam, Netherlands: Elsevier BV.; 2003.

[3]  M Fritzsche, Ueber die festen Kohlenwasserstoffe des Steinkohlentheers. [On the solid hydrocarbons of coal tar.] J Prakt Chem 1867, 101, 333.[In German]
         | Ueber die festen Kohlenwasserstoffe des Steinkohlentheers. [On the solid hydrocarbons of coal tar.]Crossref | GoogleScholarGoogle Scholar |

[4]  W Wislicenus, F Reitzenstein, Zur Kenntniss des Diketohydrindens. [About the knowledge of the diketohydrindenes.] Justus Liebigs Ann Chem 1893, 277, 362.[In German]
         | Zur Kenntniss des Diketohydrindens. [About the knowledge of the diketohydrindenes.]Crossref | GoogleScholarGoogle Scholar |

[5]  W Marckwald, Ueber Phototropie. [About phototropy.] Z Phys Chem 1899, 30U, 140.[In German]
         | Ueber Phototropie. [About phototropy.]Crossref | GoogleScholarGoogle Scholar |

[6]  H Biltz, Farbwechsel belichteter Substanzen. [Colour change of exposed substances.] Z Phys Chem 1899, 30U, 527.[In German]
         | Farbwechsel belichteter Substanzen. [Colour change of exposed substances.]Crossref | GoogleScholarGoogle Scholar |

[7]  L Chalkley, Phototropy. Chem Rev 1929, 6, 217.
         | Phototropy.Crossref | GoogleScholarGoogle Scholar |

[8]  R von Walther, LVII. Zur Kenntnis der Einwirkung von Natrium auf Nitrile. [LVII. About the effect of sodium on nitriles.] J Prakt Chem 1903, 67, 445.[In German]
         | LVII. Zur Kenntnis der Einwirkung von Natrium auf Nitrile. [LVII. About the effect of sodium on nitriles.]Crossref | GoogleScholarGoogle Scholar |

[9]  T Hayashi, Photochromism of 2,2,4,6-Tetraphenyl-1,2-dihydro-1,3,5-triazine. Bull Chem Soc Jpn 1977, 50, 2489.
         | Photochromism of 2,2,4,6-Tetraphenyl-1,2-dihydro-1,3,5-triazine.Crossref | GoogleScholarGoogle Scholar |

[10]  H Stobbe, Die Farbe der „Fulgensäuren” und „Fulgide” (7. Abhandlung über Butadiënverbindungen). [The colour of ‘Fulgenic Acids’ and ‘Fulgides’ (7th treatise on butadiene compounds).] Ber Dtsch Chem Ges 1905, 38, 3673.[In German]
         | Die Farbe der „Fulgensäuren” und „Fulgide” (7. Abhandlung über Butadiënverbindungen). [The colour of ‘Fulgenic Acids’ and ‘Fulgides’ (7th treatise on butadiene compounds).]Crossref | GoogleScholarGoogle Scholar |

[11]  H Stobbe, Phototropieerscheinungen bei Fulgiden und anderen Stoffen. [Phototrophic phenomena in fulgids and other substances.] Justus Liebigs Ann Chem 1908, 359, 1.[In German]
         | Phototropieerscheinungen bei Fulgiden und anderen Stoffen. [Phototrophic phenomena in fulgids and other substances.]Crossref | GoogleScholarGoogle Scholar |

[12]  J Schmidt, H Lumpp, Gewinnung von Phenanthren-Abkömmlingen aus dem 9.9-Dichlor-10-phenanthron. [Studien in der Phenanthrenreihe. XXV. Mitteilung]. [Obtaining phenanthrene derivatives from 9.9-dichloro-10-phenanthrone. [Studies in the phenanthrene series XXV, notice].] Ber Dtsch Chem Ges 1908, 41, 4215.
         | Gewinnung von Phenanthren-Abkömmlingen aus dem 9.9-Dichlor-10-phenanthron. [Studien in der Phenanthrenreihe. XXV. Mitteilung]. [Obtaining phenanthrene derivatives from 9.9-dichloro-10-phenanthrone. [Studies in the phenanthrene series XXV, notice].]Crossref | GoogleScholarGoogle Scholar |

[13]  A Senier, FG Shepheard, LIV.—Salicylidene-m-toluidine, a new phototropic compound; salicylideneamines: salicylamides. J Chem Soc Trans 1909, 95, 441.
         | LIV.—Salicylidene-m-toluidine, a new phototropic compound; salicylideneamines: salicylamides.Crossref | GoogleScholarGoogle Scholar |

[14]  A Senier, FG Shepheard, CCXIV.—Studies in phototropy and thermotropy. Part I. Arylidene- and naphthylidene-amines. J Chem Soc Trans 1909, 95, 1943.
         | CCXIV.—Studies in phototropy and thermotropy. Part I. Arylidene- and naphthylidene-amines.Crossref | GoogleScholarGoogle Scholar |

[15]  H Stobbe, H Mallison, Phototropie-Erscheinungen bei Stilben-Derivaten. [​Phototropy phenomena in stilbene derivatives.] Ber Dtsch Chem Ges 1913, 46, 1226.[In German]
         | Phototropie-Erscheinungen bei Stilben-Derivaten. [​Phototropy phenomena in stilbene derivatives.]Crossref | GoogleScholarGoogle Scholar |

[16]  FJ Wilson, IM Heilbron, MMJ Sutherland, CCLXXI.—Contributions to our knowledge of semicarbazones. Part IV. Action of hydrogen chloride. J Chem Soc Trans 1914, 105, 2892.
         | CCLXXI.—Contributions to our knowledge of semicarbazones. Part IV. Action of hydrogen chloride.Crossref | GoogleScholarGoogle Scholar |

[17]  J Lifschitz, Photochemische Umlagerungen in der Triphenyl-methan-Reihe. [Photochemical rearrangements in the triphenylmethane series.] Ber Dtsch Chem Ges 1919, 52, 1919.[In German]
         | Photochemische Umlagerungen in der Triphenyl-methan-Reihe. [Photochemical rearrangements in the triphenylmethane series.]Crossref | GoogleScholarGoogle Scholar |

[18]  BK Singh, Studies on phototropism in solution. Part I. J Am Chem Soc 1921, 43, 333.
         | Studies on phototropism in solution. Part I.Crossref | GoogleScholarGoogle Scholar |

[19]  EO Holmes, The photochemical activity of the triphenylmethane sulfonic acids. J Am Chem Soc 1922, 44, 1002.
         | The photochemical activity of the triphenylmethane sulfonic acids.Crossref | GoogleScholarGoogle Scholar |

[20]  W Luck, H Sand, The phenomenon of phototropy. Angew Chem Int Ed 1964, 3, 570.
         | The phenomenon of phototropy.Crossref | GoogleScholarGoogle Scholar |

[21]  L Harris, J Kaminsky, RG Simard, The absorption spectrum of malachite green leucocyanide and the mechanism of the dark reaction after photolysis. J Am Chem Soc 1935, 57, 1151.
         | The absorption spectrum of malachite green leucocyanide and the mechanism of the dark reaction after photolysis.Crossref | GoogleScholarGoogle Scholar |

[22]  GS Hartley, The cis-form of azobenzene. Nature 1937, 140, 281.
         | The cis-form of azobenzene.Crossref | GoogleScholarGoogle Scholar |

[23]  RGW Norrish, G Porter, Chemical reactions produced by very high light intensities. Nature 1949, 164, 658.
         | Chemical reactions produced by very high light intensities.Crossref | GoogleScholarGoogle Scholar |

[24]  N Tamai, H Miyasaka, Ultrafast dynamics of photochromic systems. Chem Rev 2000, 100, 1875.
         | Ultrafast dynamics of photochromic systems.Crossref | GoogleScholarGoogle Scholar |

[25]  Y Hirshberg, Photochromie dans la serie de la bianthrone. [Photochromy in the bianthrone series.] C R Acad Sci 1950, 231, 903..[In French]

[26]  E Fischer, Y Hirshberg, Formation of coloured forms of spirans by low-temperature irradiation. J Chem Soc 1952, 1952, 4522.

[27]  T Hayashi, K Maeda, Preparation of a new phototropic substance. Bull Chem Soc Jpn 1960, 33, 565.
         | Preparation of a new phototropic substance.Crossref | GoogleScholarGoogle Scholar |

[28]  HR Blattmann, D Meuche, E Heilbronner, RJ Molyneux, V Boekelheide, Photoisomerization of trans-15,16-dimethyldihydropyrene. J Am Chem Soc 1965, 87, 130.
         | Photoisomerization of trans-15,16-dimethyldihydropyrene.Crossref | GoogleScholarGoogle Scholar |

[29]  KA Muszkat, D Gegiou, E Fischer, The hexamethylstilbene–hexamethyldithydrophenanthrene interconversion, an example of a reversible photocyclization. Chem Commun 1965, 1965, 447.
         | The hexamethylstilbene–hexamethyldithydrophenanthrene interconversion, an example of a reversible photocyclization.Crossref | GoogleScholarGoogle Scholar |

[30]  J Daub, T Knöchel, A Mannschreck, Photosensitive dihydroazulenes with chromogenic properties. Angew Chem Int Ed 1984, 23, 960.
         | Photosensitive dihydroazulenes with chromogenic properties.Crossref | GoogleScholarGoogle Scholar |

[31]  M Irie, M Mohri, Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J Org Chem 1988, 53, 803.
         | Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives.Crossref | GoogleScholarGoogle Scholar |

[32]  Royal Swedish Academy of Sciences. The Nobel Prize in Chemistry 2016. Press release; 2016. Available at https://www.nobelprize.org/prizes/chemistry/2016/press-release/

[33]  BL Feringa, WF Jager, B De Lange, EW Meijer, Chiroptical molecular switch. J Am Chem Soc 1991, 113, 5468.
         | Chiroptical molecular switch.Crossref | GoogleScholarGoogle Scholar |

[34]  S Helmy, FA Leibfarth, S Oh, JE Poelma, CJ Hawker, J Read de Alaniz, Photoswitching using visible light: a new class of organic photochromic molecules. J Am Chem Soc 2014, 136, 8169.
         | Photoswitching using visible light: a new class of organic photochromic molecules.Crossref | GoogleScholarGoogle Scholar |

[35]  MM Lerch, W Szymański, BL Feringa, The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. Chem Soc Rev 2018, 47, 1910.
         | The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design.Crossref | GoogleScholarGoogle Scholar |

[36]  Turro NJ, Ramamurthy V, Scaiano JC. Modern Molecular Photochemistry of Organic Molecules. Mill Valley, CA, USA: University Science Books; 2010.

[37]  S Mai, L González, Molecular photochemistry: recent developments in theory. Angew Chem Int Ed 2020, 59, 16832.
         | Molecular photochemistry: recent developments in theory.Crossref | GoogleScholarGoogle Scholar |

[38]  Y Boeije, M Olivucci, From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023, 52, 2643.
         | From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions.Crossref | GoogleScholarGoogle Scholar |

[39]  W Domcke, DR Yarkony, Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu Rev Phys Chem 2012, 63, 325.
         | Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics.Crossref | GoogleScholarGoogle Scholar |

[40]  R Klajn, Spiropyran-based dynamic materials. Chem Soc Rev 2014, 43, 148.
         | Spiropyran-based dynamic materials.Crossref | GoogleScholarGoogle Scholar |

[41]  VI Minkin, Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 2004, 104, 2751.
         | Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds.Crossref | GoogleScholarGoogle Scholar |

[42]  L Kortekaas, WR Browne, The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 2019, 48, 3406.
         | The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome.Crossref | GoogleScholarGoogle Scholar |

[43]  M Boggio-Pasqua, MJ Bearpark, MA Robb, Toward a mechanistic understanding of the photochromism of dimethyldihydropyrenes. J Org Chem 2007, 72, 4497.
         | Toward a mechanistic understanding of the photochromism of dimethyldihydropyrenes.Crossref | GoogleScholarGoogle Scholar |

[44]  E Lognon, R Sarkar, M-C Heitz, M Boggio-Pasqua, Dihydropyrene/cyclophanediene photoswitching mechanism revisited with spin-flip time-dependent density functional theory: nature of the photoisomerization funnel at stake! J Phys Chem A 2023, 127, 2921.
         | Dihydropyrene/cyclophanediene photoswitching mechanism revisited with spin-flip time-dependent density functional theory: nature of the photoisomerization funnel at stake!Crossref | GoogleScholarGoogle Scholar |

[45]  RH Mitchell, The metacyclophanediene–dihydropyrene photochromic π switch. Eur J Org Chem 1999, 1999, 2695.
         | The metacyclophanediene–dihydropyrene photochromic π switch.Crossref | GoogleScholarGoogle Scholar |

[46]  M Irie, T Fukaminato, K Matsuda, S Kobatake, Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 2014, 114, 12174.
         | Photochromism of diarylethene molecules and crystals: memories, switches, and actuators.Crossref | GoogleScholarGoogle Scholar |

[47]  M Boggio-Pasqua, M Ravaglia, MJ Bearpark, M Garavelli, MA Robb, Can diarylethene photochromism be explained by a reaction path alone? A CASSCF study with model MMVB dynamics. J Phys Chem A 2003, 107, 11139.
         | Can diarylethene photochromism be explained by a reaction path alone? A CASSCF study with model MMVB dynamics.Crossref | GoogleScholarGoogle Scholar |

[48]  S Nakamura, M Irie, Thermally irreversible photochromic systems. A theoretical study. J Org Chem 1988, 53, 6136.
         | Thermally irreversible photochromic systems. A theoretical study.Crossref | GoogleScholarGoogle Scholar |

[49]  S Helmy, S Oh, FA Leibfarth, CJ Hawker, J Read de Alaniz, Design and synthesis of donor–acceptor stenhouse adducts: a visible light photoswitch derived from furfural. J Org Chem 2014, 79, 11316.
         | Design and synthesis of donor–acceptor stenhouse adducts: a visible light photoswitch derived from furfural.Crossref | GoogleScholarGoogle Scholar |

[50]  JR Hemmer, SO Poelma, N Treat, ZA Page, ND Dolinski, YJ Diaz, W Tomlinson, KD Clark, JP Hooper, C Hawker, J Read de Alaniz, Tunable visible and near infrared photoswitches. J Am Chem Soc 2016, 138, 13960.
         | Tunable visible and near infrared photoswitches.Crossref | GoogleScholarGoogle Scholar |

[51]  Y Yokoyama, Fulgides for memories and switches. Chem Rev 2000, 100, 1717.
         | Fulgides for memories and switches.Crossref | GoogleScholarGoogle Scholar |

[52]  L-Y Peng, Z-W Li, Q Fang, B-B Xie, S-H Xia, G Cui, Combined QM (MS-CASPT2)/MM studies on photocyclization and photoisomerization of a fulgide derivative in toluene solution. Phys Chem Chem Phys 2022, 24, 29918.
         | Combined QM (MS-CASPT2)/MM studies on photocyclization and photoisomerization of a fulgide derivative in toluene solution.Crossref | GoogleScholarGoogle Scholar |

[53]  R Siewertsen, F Renth, F Temps, F Sönnichsen, Parallel ultrafast E–C ring closure and E–Z isomerisation in a photochromic furylfulgide studied by femtosecond time-resolved spectroscopy. Phys Chem Chem Phys 2009, 11, 5952.
         | Parallel ultrafast E–C ring closure and E–Z isomerisation in a photochromic furylfulgide studied by femtosecond time-resolved spectroscopy.Crossref | GoogleScholarGoogle Scholar |

[54]  HMD Bandara, SC Burdette, Photoisomerization in different classes of azobenzene. Chem Soc Rev 2012, 41, 1809.
         | Photoisomerization in different classes of azobenzene.Crossref | GoogleScholarGoogle Scholar |

[55]  FA Jerca, VV Jerca, R Hoogenboom, Advances and opportunities in the exciting world of azobenzenes. Nat Rev Chem 2022, 6, 51.
         | Advances and opportunities in the exciting world of azobenzenes.Crossref | GoogleScholarGoogle Scholar |

[56]  M Quick, AL Dobryakov, M Gerecke, C Richter, F Berndt, IN Ioffe, AA Granovsky, R Mahrwald, NP Ernsting, SA Kovalenko, Photoisomerization dynamics and pathways of trans- and cis-azobenzene in solution from broadband femtosecond spectroscopies and calculations. J Phys Chem B 2014, 118, 8756.
         | Photoisomerization dynamics and pathways of trans- and cis-azobenzene in solution from broadband femtosecond spectroscopies and calculations.Crossref | GoogleScholarGoogle Scholar |

[57]  A Nenov, R Borrego-Varillas, A Oriana, L Ganzer, F Segatta, I Conti, J Segarra-Marti, J Omachi, M Dapor, S Taioli, C Manzoni, S Mukamel, G Cerullo, M Garavelli, UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in trans-Azobenzene. J Phys Chem Lett 2018, 9, 1534.
         | UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in trans-Azobenzene.Crossref | GoogleScholarGoogle Scholar |

[58]  SL Broman, MB Nielsen, Dihydroazulene: from controlling photochromism to molecular electronics devices. Phys Chem Chem Phys 2014, 16, 21172.
         | Dihydroazulene: from controlling photochromism to molecular electronics devices.Crossref | GoogleScholarGoogle Scholar |

[59]  M Boggio-Pasqua, MJ Bearpark, PA Hunt, MA Robb, Dihydroazulene/vinylheptafulvene photochromism: a model for one-way photochemistry via a conical intersection. J Am Chem Soc 2002, 124, 1456.
         | Dihydroazulene/vinylheptafulvene photochromism: a model for one-way photochemistry via a conical intersection.Crossref | GoogleScholarGoogle Scholar |

[60]  M Abedi, M Pápai, KV Mikkelsen, NE Henriksen, KB Møller, Mechanism of photoinduced dihydroazulene ring-opening reaction. J Phys Chem Lett 2019, 10, 3944.
         | Mechanism of photoinduced dihydroazulene ring-opening reaction.Crossref | GoogleScholarGoogle Scholar |

[61]  J Sheng, W Danowski, S Crespi, A Guinart, X Chen, C Stähler, BL Feringa, Designing P-type bi-stable overcrowded alkene-based chiroptical photoswitches. Chem Sci 2023, 14, 4328.
         | Designing P-type bi-stable overcrowded alkene-based chiroptical photoswitches.Crossref | GoogleScholarGoogle Scholar |

[62]  BL Feringa, RA van Delden, N Koumura, EM Geertsema, Chiroptical molecular switches. Chem Rev 2000, 100, 1789.
         | Chiroptical molecular switches.Crossref | GoogleScholarGoogle Scholar |

[63]  M Feng, MK Gilson, Mechanistic analysis of light-driven overcrowded alkene-based molecular motors by multiscale molecular simulations. Phys Chem Chem Phys 2021, 23, 8525.
         | Mechanistic analysis of light-driven overcrowded alkene-based molecular motors by multiscale molecular simulations.Crossref | GoogleScholarGoogle Scholar |

[64]  J Andréasson, U Pischel, Molecules with a sense of logic: a progress report. Chem Soc Rev 2015, 44, 1053.
         | Molecules with a sense of logic: a progress report.Crossref | GoogleScholarGoogle Scholar |

[65]  P Remón, M Bälter, SM Li, J Andréasson, U Pischel, An all-photonic molecule-based D flip-flop. J Am Chem Soc 2011, 133, 20742.
         | An all-photonic molecule-based D flip-flop.Crossref | GoogleScholarGoogle Scholar |

[66]  K Hüll, J Morstein, D Trauner, In Vivo Photopharmacology. Chem Rev 2018, 118, 10710.
         | In Vivo Photopharmacology.Crossref | GoogleScholarGoogle Scholar |

[67]  WA Velema, JP van der Berg, MJ Hansen, W Szymanski, AJM Driessen, BL Feringa, Optical control of antibacterial activity. Nat Chem 2013, 5, 924.
         | Optical control of antibacterial activity.Crossref | GoogleScholarGoogle Scholar |

[68]  M Wegener, MJ Hansen, AJM Driessen, W Szymanski, BL Feringa, Photocontrol of antibacterial activity: shifting from UV to red light activation. J Am Chem Soc 2017, 139, 17979.
         | Photocontrol of antibacterial activity: shifting from UV to red light activation.Crossref | GoogleScholarGoogle Scholar |

[69]  S Corra, M Curcio, M Baroncini, S Silvi, A Credi, Photoactivated artificial molecular machines that can perform tasks. Adv Mater 2020, 32, 1906064.
         | Photoactivated artificial molecular machines that can perform tasks.Crossref | GoogleScholarGoogle Scholar |

[70]  M Baroncini, S Silvi, A Credi, Photo- and redox-driven artificial molecular motors. Chem Rev 2020, 120, 200.
         | Photo- and redox-driven artificial molecular motors.Crossref | GoogleScholarGoogle Scholar |

[71]  J Chen, SJ Wezenberg, BL Feringa, Intramolecular transport of small-molecule cargo in a nanoscale device operated by light. Chem Commun 2016, 52, 6765.
         | Intramolecular transport of small-molecule cargo in a nanoscale device operated by light.Crossref | GoogleScholarGoogle Scholar |

[72]  AM Rice, CR Martin, VA Galitskiy, AA Berseneva, GA Leith, NB Shustova, Photophysics modulation in photoswitchable metal–organic frameworks. Chem Rev 2020, 120, 8790.
         | Photophysics modulation in photoswitchable metal–organic frameworks.Crossref | GoogleScholarGoogle Scholar |

[73]  A Modrow, D Zargarani, R Herges, N Stock, The first porous MOF with photoswitchable linker molecules. Dalton Trans 2011, 40, 4217.
         | The first porous MOF with photoswitchable linker molecules.Crossref | GoogleScholarGoogle Scholar |

[74]  Y Jiang, P Tan, SC Qi, XQ Liu, JH Yan, F Fan, LB Sun, Metal–organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture. Angew Chem Int Ed 2019, 58, 6600.
         | Metal–organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture.Crossref | GoogleScholarGoogle Scholar |

[75]  M Kondo, K Nakamura, CG Krishnan, H Sasai, S Takizawa, Photoswitchable chiral organocatalysts: photocontrol of enantioselective reactions. Chem Rec 2023, 23, e202300040.
         | Photoswitchable chiral organocatalysts: photocontrol of enantioselective reactions.Crossref | GoogleScholarGoogle Scholar |

[76]  JB Wang, BL Feringa, Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 2011, 331, 1429.
         | Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor.Crossref | GoogleScholarGoogle Scholar |

[77]  BM Neilson, CW Bielawski, Illuminating photoswitchable catalysis. ACS Catal 2013, 3, 1874.
         | Illuminating photoswitchable catalysis.Crossref | GoogleScholarGoogle Scholar |

[78]  A Ueno, K Takahashi, T Osa, Photocontrol of catalytic activity of capped cyclodextrin. J Chem Soc Chem Commun 1981, 94.
         | Photocontrol of catalytic activity of capped cyclodextrin.Crossref | GoogleScholarGoogle Scholar |

[79]  BM Neilson, CW Bielawski, Photoswitchable organocatalysis: using light to modulate the catalytic activities of N-heterocyclic carbenes. J Am Chem Soc 2012, 134, 12693.
         | Photoswitchable organocatalysis: using light to modulate the catalytic activities of N-heterocyclic carbenes.Crossref | GoogleScholarGoogle Scholar |

[80]  BM Neilson, CW Bielawski, Photoswitchable metal-mediated catalysis: remotely tuned alkene and alkyne hydroborations. Organometallics 2013, 32, 3121.
         | Photoswitchable metal-mediated catalysis: remotely tuned alkene and alkyne hydroborations.Crossref | GoogleScholarGoogle Scholar |

[81]  XH Huang, T Li, Recent progress in the development of molecular-scale electronics based on photoswitchable molecules. J Mater Chem C 2020, 8, 821.
         | Recent progress in the development of molecular-scale electronics based on photoswitchable molecules.Crossref | GoogleScholarGoogle Scholar |

[82]  D Dulić, SJ van der Molen, T Kudernac, HT Jonkman, JJD de Jong, TN Bowden, J van Esch, BL Feringa, BJ van Wees, One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 2003, 91, 207402.
         | One-way optoelectronic switching of photochromic molecules on gold.Crossref | GoogleScholarGoogle Scholar |

[83]  M Roemer, A Gillespie, D Jago, D Costa-Milan, J Alqahtani, J Hurtado-Gallego, H Sadeghi, CJ Lambert, PR Spackman, AN Sobolev, BW Skelton, A Grosjean, M Walkey, S Kampmann, A Vezzoli, PV Simpson, M Massi, I Planje, G Rubio-Bollinger, N Agraït, SJ Higgins, S Sangtarash, MJ Piggott, RJ Nichols, GA Koutsantonis, 2,7-and 4,9-Dialkynyldihydropyrene molecular switches: syntheses, properties, and charge transport in single-molecule junctions. J Am Chem Soc 2022, 144, 12698.
         | 2,7-and 4,9-Dialkynyldihydropyrene molecular switches: syntheses, properties, and charge transport in single-molecule junctions.Crossref | GoogleScholarGoogle Scholar |

[84]  D Roldan, V Kaliginedi, S Cobo, V Kolivoska, C Bucher, W Hong, G Royal, T Wandlowski, Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J Am Chem Soc 2013, 135, 5974.
         | Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions.Crossref | GoogleScholarGoogle Scholar |