Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Interaction and quantitative trait loci

O. Mayo
+ Author Affiliations
- Author Affiliations

CSIRO Livestock Industries, PO Box 10041, Adelaide BC, SA 5000, Australia. Email: oliver.mayo@csiro.au

Australian Journal of Experimental Agriculture 44(11) 1135-1140 https://doi.org/10.1071/EA03240
Submitted: 18 November 2003  Accepted: 23 July 2004   Published: 14 December 2004

Abstract

Parallel searches for quantitative trait loci (QTL) for growth-related traits in different populations frequently detect sets of QTL that hardly overlap. Thus, many QTL potentially exist. Tools for the detection of QTL that interact are available and are currently being tested. Initial results suggest that epistasis is widespread. Modelling of the first recognised interaction, dominance, continues to be developed. Multigenic interaction appears to be a necessary part of any explanation. This paper covers an attempt to link some of these studies and to draw inferences about useful approaches to understanding and using the genes that influence quantitative traits.


Acknowledgments

I thank Reinhard Bürger, Carolyn Leach, Scott Newman and John Sved for helpful discussion and 2 referees and the editor for identifying many problems in the original draft.


References


Bagheri-Chaichian H, Wagner GP (2002) Evolution of dominance through incidental selection. Santa Fe Institute Working Papers, 2002, No. 02-11-064, Santa Fe Institute, Santa Fe, New Mexico.

Bateman AJ (1943) Specific differences in Petunia. II. Journal of Genetics 43, 236–242.
Crossref |
open url image1

Bidanel JP, Rothschild M (2002) Current status of quantitative trait locus mapping in pigs. Pig News and Information 23, 39N–54N. open url image1

Blower JG, Cook LM, Bishop JA (1981) ‘Estimating the size of animal populations.’ (John Wiley: New York)

Bogdan M, Ghosh JK, Doerge RW (2004) Modifying the Schwartz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics 167, 989–999.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bradshaw HD, Otto KG, Frewen BE, McKay JK, Schemske DW (1998) Quantitative trait loci affecting floral morphology between two different species of monkeyflower (Mimulus). Genetics 149, 367–382.
PubMed |
open url image1

Bürger R (2000) ‘The mathematical theory of selection, recombination, and mutation.’ (Wiley: New York)

Chai CK (1961) Analysis of quantitative inheritance of body size in mice. IV. An attempt to isolate polygenes. Genetical Research 2, 25–32. open url image1

Charlesworth B (1998) The effect of synergistic epistasis on the inbreeding load. Genetical Research 71, 85–89.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cheverud JM, Routman EJ, Duarte FAM, van Swinderen B, Cothran K, Perel C (1996) Quantitative trait loci for murine growth. Genetics 142, 1305–1319.
PubMed |
open url image1

Falconer DS (1960) ‘Introduction to quantitative genetics.’ (Oliver & Boyd: Edinburgh)

Fisher RA (1918) On the correlations between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52, 399–433. open url image1

Fisher RA (1928) The possible modification of the response of the wild type to recurrent mutations. American Naturalist 62, 15–126. open url image1

Fisher RA (1930) ‘The genetical theory of natural selection.’ (Clarendon Press: Oxford)

Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N (2001) A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics 159, 883–892.
PubMed |
open url image1

Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N (2002) Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160, 313–322.
PubMed |
open url image1

Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97, 639–666.
PubMed |
open url image1

Kärkkäinen K, Koski V, Savolainen O (1996) Geographical variation in the inbreeding of Scots pine. Evolution 50, 111–119.
Crossref |
open url image1

Keightley PD (1998) Genetic basis of response to 50 generations of selection on body weight in inbred mice. Genetics 148, 1931–1939.
PubMed |
open url image1

Keightley PD, Hardge T, May L, Bulfield G (1996) A genetic map of quantitative trait loci for body weight in the mouse. Genetics 142, 227–235.
PubMed |
open url image1

Keightley PD, Knott SA (1999) Testing the correspondence between map positions of quantitative trait loci. Genetical Research 74, 323–328.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Luo LJ, Li Z-K, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics 158, 1755–1771.
PubMed |
open url image1

Mayo O (1987) ‘The theory of plant breeding.’ 2nd edn (Clarendon Press: Oxford)

Mayo O (1996) The application of QTL methodology to Merino breeding. Wool Technology and Sheep Breeding 44, 281–289. open url image1

Mayo O, Bürger R (1997) The evolution of dominance: a theory whose time has passed? Biological Reviews 72, 97–110.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mayo O, Hopkins AM (1985) Problems in estimating the minimum number of genes contributing to quantitative variation. Biomedical Journal 27, 181–187. open url image1

Omholt S, Plahte E, Oyehaug L, Xiang K (2000) Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics 155, 969–980.
PubMed |
open url image1

Otto SP, Jones CD (2000) Detecting the undetected: estimating the total number of loci underlying a quantitative trait. Genetics 156, 2093–2107.
PubMed |
open url image1

Rebbeck TR, Kanetsky PA, Walker AH, Holmes R, Halpert AC, Schucht LM, Elder DE, Guerry D (2002) P gene as an inherited biomarker of human eye color. Cancer Epidemiology and Biomarker Prevention 11, 782–784. open url image1

Reifsnyder PC, Churchill G, Leiter EH (2000) Maternal environment and genotype interact to establish diabesity in mice. Genome Research 10, 1568–1578.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Remington DL, O’Malley DM (2000) Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155, 337–348.
PubMed |
open url image1

Robin C, Lyman RF, Long AD, Langley CH, Mackay TFC (2002) hairy: a quantitative trait locus for Drosophila sensory bristle number. Genetics 162, 155–164.
PubMed |
open url image1

Roff DA (2002) Inbreeding depression: tests of the overdominance and partial dominance hypotheses. Evolution 56, 768–775.
PubMed |
open url image1

Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N , et al. (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTL with epistatic effects and QTL × environment interactions by mixed model approaches. Theoretical and Applied Genetics 99, 1255–1264.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wilkie AOM (1994) The molecular basis of genetic dominance. Journal of Medical Genetics 31, 89–98.
Crossref | PubMed |
open url image1

Wright S (1929) Fisher’s theory of dominance. American Naturalist 63, 274–279.
Crossref |
open url image1

Yi N, Xu S (2002) Mapping quantitative trait loci with epistatic effects. Genetical Research 79, 185–198.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zhu G, Evans DM, Duffy DL, Montgomery GW, Medland SE , et al. (2004) A genome scan for eye color in 502 twin families: most variation is due to a QTL on chromosome 15q. Twin Research 7, 197–210.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1