Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Determination of critical nitrogen concentrations of potato (Solanum tuberosum L. cv. Sebago) grown in sand culture

DO Huett and E White

Australian Journal of Experimental Agriculture 32(6) 765 - 772
Published: 1992

Abstract

A gamma x cubic response surface model was used to predict the dry matter yield of potato cv. Sebago over the 12-week growth period in sand culture with nitrogen (N) levels of 2, 7, 14, 29 and 43 mmol N/L. At each 2-week sampling period after emergence, dry matter yield relative to maximum was plotted against tissue N concentration to derive diagnostic petiole, petiole sap, leaf nitrate-N and leaf total N in youngest fully opened leaf (YFOL), youngest fully expanded leaf (YFEL) and oldest green leaf (OL) and for total N in bulked leaves. Critical concentrations corresponding to 90% maximum yield are presented. Tissue nitrate was much more responsive than leaf total N to applied N over the 2-14 mmol/L range where positive growth responses to N were recorded. Plants grown with 2 mmol N/L were severely N deficient and growth was depressed. Tissue nitrate concentrations in these plants from 4 weeks after emergence onwards were negligible, while leaf total N concentrations exceeded 2.36%. Salt toxicity occurred at 29 and 43 mmol NIL, and it sometimes reduced tissue N concentrations so that adequacy and toxicity concentrations overlapped. Critical tissue N concentrations declined over the growth period, the largest decline occurring for nitrate. Critical tissue N concentrations for YFEL, from 2 weeks after emergence to final harvest were: petiole sap nitrate-N, 1.2-0.2 g/L; petiole nitrate-N, 2.1-0.1%; leaf nitrate-N, 0.44-0.08%. Critical tissue nitrate concentrations clearly differentiated between inadequate and adequate N application levels. Critical leaf total N concentrations only differentiated between inadequate and marginal N application rates, except for OL when inadequate and marginally adequate (80-90% maximum yield) concentrations were not different (P>0.05). Nitrogen application level affected (P<0.05) leaf potassium, phosphorus, calcium (Ca), magnesium (Mg) and sulfur concentrations. The largest effects were recorded for Ca and Mg where increasing N application level reduced leaf nutrient concentration. Petiole sap nitrate concentrations can be used as a rapid field test for distinguishing between a deficient and an adequate N supply. Where concentrations exceed critical values, they can be interpreted as such because N fertiliser toxicity rarely occurs under field conditions.

https://doi.org/10.1071/EA9920765

© CSIRO 1992

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (5) Get Permission

View Dimensions