Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Pseudoscorpions of the family Feaellidae (Pseudoscorpiones : Feaelloidea) from the Pilbara region of Western Australia show extreme short-range endemism

Mark S. Harvey A B C D F , Kym M. Abrams A B , Amber S. Beavis A E , Mia J. Hillyer A and Joel A. Huey A B
+ Author Affiliations
- Author Affiliations

A Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.

B School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia.

C School of Natural Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.

D Division of Invertebrate Zoology, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192, USA; Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA 94103-3009, USA.

E Present address: Office of the Chief Scientist, Industry House, 10 Binara Street, Canberra City, ACT 2601, Australia.

F Corresponding author. Email: mark.harvey@museum.wa.gov.au

Invertebrate Systematics 30(5) 491-508 https://doi.org/10.1071/IS16013
Submitted: 12 February 2016  Accepted: 27 April 2016   Published: 31 October 2016

Abstract

The phylogenetic relationships of the Australian species of Feaellidae are assessed with a molecular analysis using mitochondrial (CO1) and nuclear (ITS2) data. These results confirm the morphological analysis that three previously undescribed species occur in the Pilbara bioregion, which are named and described: Feaella (Tetrafeaella) callani, sp. nov., F. (T.) linetteae, sp. nov. and F. (T.) tealei, sp. nov. The males of these three species, as well as males of F. anderseni Harvey and other unnamed species from the Kimberley region of north-western Australia, have a pair of enlarged, thick-walled bursa that are not found in other feaellids. Despite numerous environmental impact surveys for short-range endemic invertebrates in the Pilbara, very few specimens have been collected, presumably due to their relictual distributions, restricted habitat preferences and low densities.

http://zoobank.org/urn:lsid:zoobank.org:pub:131F0587-F2EE-405F-BE5A-772F072D9915

Additional keywords: morphology, new species, taxonomy, threatened species.


References

Agnarsson, I. (2010). The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelosimus. The Journal of Arachnology 38, 377–382.
The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelosimus.CrossRef | open url image1

Arabi, J., Judson, M. L., Deharveng, L., Lourenco, W. R., Cruaud, C., and Hassanin, A. (2012). Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements. Journal of Molecular Evolution 74, 81–95.
Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements.CrossRef | 1:CAS:528:DC%2BC38Xktlaktr0%3D&md5=c35cf3c7b9cfae91dcb2e7d48bb4b2a9CAS | 22362465PubMed | open url image1

Beier, M. (1932). Pseudoscorpionidea II. Subord. C. Cheliferinea. Das Tierreich 58, i–xxi, 1–294.

Beier, M. (1955). Pseudoscorpionidea, gesammelt während der schwedischen Expeditionen nach Ostafrika 1937–38 und 1948. Arkiv för Zoologi, Ser. 2 7, 527–558. open url image1

Beier, M. (1964). Weiteres zur Kenntnis der Pseudoscorpioniden-Fauna des südlichen Afrika. Annals of the Natal Museum 16, 30–90. open url image1

Ben-David, T., Melamed, S., Gerson, U., and Morin, S. (2007). ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Experimental & Applied Acarology 41, 169–181.
ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae).CrossRef | 1:CAS:528:DC%2BD2sXjtlymur0%3D&md5=453fa856de4370417edc63ee23e7d75fCAS | open url image1

Benedict, E. M., and Malcolm, D. R. (1978). The family Pseudogarypidae (Pseudoscorpionida) in North America with comments on the genus Neopseudogarypus Morris from Tasmania. The Journal of Arachnology 6, 81–104. open url image1

Bragagnolo, C., Pinto-da-Rocha, R., Antunes, M., and Clouse, R. M. (2015). Phylogenetics and phylogeography of a long-legged harvestman (Arachnida: Opiliones) in the Brazilian Atlantic Rain Forest reveals poor dispersal, low diversity and extensive mitochondrial introgression. Invertebrate Systematics 29, 386–404.
Phylogenetics and phylogeography of a long-legged harvestman (Arachnida: Opiliones) in the Brazilian Atlantic Rain Forest reveals poor dispersal, low diversity and extensive mitochondrial introgression.CrossRef | 1:CAS:528:DC%2BC2MXhsVSru7fJ&md5=47abf0f4dc5897d825ebe9b46b56ffbbCAS | open url image1

Castalanelli, M. A., Severtson, D. L., Brumley, C. J., Szito, A., Foottit, R. G., Grimm, M., Munyard, K., and Groth, D. M. (2010). A rapid non-destructive DNA extraction method for insects and other arthropods. Journal of Asia-Pacific Entomology 13, 243–248.
A rapid non-destructive DNA extraction method for insects and other arthropods.CrossRef | 1:CAS:528:DC%2BC3cXhsFelsrvJ&md5=22c45937b0a80fcb889bd95db2a731a9CAS | open url image1

Castalanelli, M. A., Teale, R., Rix, M. G., Kennington, J. W., and Harvey, M. S. (2014). Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics 28, 375–385.
| 1:CAS:528:DC%2BC2cXhsFKntr7J&md5=2b9978280e3a06f975e381e0232a8f56CAS | open url image1

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.CrossRef | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=7270e7b94b46ec4a30ad5328609b8552CAS | 10742046PubMed | open url image1

Chamberlin, J. C. (1931). The arachnid order Chelonethida. Stanford University Publications, Biological Sciences 7, 1–284. open url image1

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.CrossRef | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=b326576d8549dc5561e70b14d1339c77CAS | 22847109PubMed | open url image1

Durrant, B. J., Harvey, M. S., Framenau, V. W., Ott, R., and Waldock, J. M. (2010). Patterns in the composition of ground-dwelling spider communities in the Pilbara bioregion, Western Australia. Records of the Western Australian Museum 78, 185–204.
Patterns in the composition of ground-dwelling spider communities in the Pilbara bioregion, Western Australia.CrossRef | open url image1

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.CrossRef | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=9d94fe4230b53e1213abb545ddca7e97CAS | 15034147PubMed | open url image1

Ellingsen, E. (1906). Report on the pseudoscorpions of the Guinea Coast (Africa) collected by Leonardo Fea. Annali del Museo Civico di Storia Naturale di Genova, Ser. 3 2, 243–265. open url image1

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=3ed3b40952948838a8ebb6c4cd36ee0cCAS | 7881515PubMed | open url image1

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.CrossRef | 1:CAS:528:DyaK28XhtVylur8%3D&md5=8501731e5196d8ed2d5eacbe2e19f3f0CAS | 8583909PubMed | open url image1

Harms, D., and Framenau, V. W. (2013). New species of mouse spiders (Araneae: Mygalomorphae: Actinopodidae: Missulena) from the Pilbara region, Western Australia. Zootaxa 3637, 521–540.
| 26046218PubMed | open url image1

Harvey, M. S. (1989). A new species of Feaella Ellingsen from north-western Australia (Pseudoscorpionida: Feaellidae). Bulletin of the British Arachnological Society 8, 41–44. open url image1

Harvey, M. S. (1991). ‘Catalogue of the Pseudoscorpionida.’ (Manchester University Press: Manchester, UK.)

Harvey, M. S. (1992). The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebrate Taxonomy 6, 1373–1435.
The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida).CrossRef | open url image1

Harvey, M. S. (2013). Pseudoscorpions of the World, version 3.0. Western Australian Museum, Perth. Available at http://museum.wa.gov.au/catalogues-beta/pseudoscorpions [Accessed 4 February 2016].

Harvey, M. S., Berry, O., Edward, K. L., and Humphreys, G. (2008). Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semi-arid Australia. Invertebrate Systematics 22, 167–194.
Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semi-arid Australia.CrossRef | 1:CAS:528:DC%2BD1cXlslajsr8%3D&md5=f19d73a9bbf994327239e28df9a0b5ceCAS | open url image1

Harvey, F. S. B., Framenau, V. W., Wojcieszek, J. M., Rix, M. G., and Harvey, M. S. (2012a). Molecular and morphological characterisation of new species in the trapdoor spider genus Aname (Araneae: Mygalomorphae: Nemesiidae) from the Pilbara bioregion of Western Australia. Zootaxa 3383, 15–38.
Molecular and morphological characterisation of new species in the trapdoor spider genus Aname (Araneae: Mygalomorphae: Nemesiidae) from the Pilbara bioregion of Western Australia.CrossRef | open url image1

Harvey, M. S., Ratnaweera, P. B., Udagama, P. V., and Wijesinghe, M. R. (2012b). A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes. Journal of Natural History 46, 2519–2535.
A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes.CrossRef | open url image1

Harvey, M. S., Andrade, R., and Pinto-da-Rocha, R. (2016). The first New World species of the pseudoscorpion family Feaellidae (Pseudoscorpiones: Feaelloidea), from the Mata Atlântica biome. Journal of Arachnology 44, 227–234. open url image1

Henderickx, H., and Boone, M. (2014). The first fossil Feaella Ellingsen, 1906, representing an unexpected pseudoscorpion family in Baltic Amber (Pseudoscorpiones, Feaellidae). Entomo-Info 25, 5–11. open url image1

Heurtault-Rossi, J., and Jézéquel, J. F. (1965). Observations sur Feaella mirabilis Ell. (Arachnide, Pseudoscorpion). Les chélicères et les pattes-mâchoires des nymphes et des adultes. Description de l’appareil reproducteur. Bulletin du Muséum National d’Histoire Naturelle, Ser. 2 37, 450–461. open url image1

Johnson, M. S., Hamilton, Z. R., Murphy, C. E., MacLeay, C. A., Roberts, B., and Kendrick, P. G. (2004). Evolutionary genetics of island and mainland species of Rhagada (Gastropoda: Pulmonata) in the Pilbara region, Western Australia. Australian Journal of Zoology 52, 341–355.
Evolutionary genetics of island and mainland species of Rhagada (Gastropoda: Pulmonata) in the Pilbara region, Western Australia.CrossRef | open url image1

Judson, M. L. I. (1992). African Chelonethi. Studies on the systematics, biogeography and natural history of African pseudoscorpions (Arachnida). (University of Leeds: Leeds, UK.)

Judson, M. L. I. (2007). A new and endangered species of the pseudoscorpion genus Lagynochthonius from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini (Arachnida, Chelonethi, Chthoniidae). Zootaxa 1627, 53–68. open url image1

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.CrossRef | 22543367PubMed | open url image1

McHugh, A., Yablonsky, C., Binford, G., and Agnarsson, I. (2014). Molecular phylogenetics of Caribbean Micrathena (Araneae: Araneidae) suggests multiple colonisation events and single island endemism. Invertebrate Systematics 28, 337–349. open url image1

Morris, J. C. H. (1948). A new genus of pseudogarypin pseudoscorpions possessing pleural plates. Papers and Proceedings of the Royal Society of Tasmania 1947, 43–47. open url image1

Muchmore, W. B. (1981). Cavernicolous species of Larca, Archeolarca and Pseudogarypus with notes on the genera (Pseudoscorpionida, Garypidae and Pseudogarypidae). The Journal of Arachnology 9, 47–60. open url image1

Murienne, J., Harvey, M. S., and Giribet, G. (2008). First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Molecular Phylogenetics and Evolution 49, 170–184.
First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata).CrossRef | 1:CAS:528:DC%2BD1cXhtFOltrzP&md5=73a5a2490f7512ce9da2bdcc4a3de0deCAS | 18603009PubMed | open url image1

Nunn, G. B., Theisen, B. F., Christensen, B., and Arctander, P. (1996). Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. Journal of Molecular Evolution 42, 211–223.
Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda.CrossRef | 1:CAS:528:DyaK28XitFSku7c%3D&md5=56070f041a0b7a2ec8f61c83c38d48a4CAS | 8919873PubMed | open url image1

Rix, M. G., Harvey, M. S., and Roberts, J. D. (2010). A revision of the textricellin spider genus Raveniella (Araneae: Araneoidea: Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot. Invertebrate Systematics 24, 209–237.
A revision of the textricellin spider genus Raveniella (Araneae: Araneoidea: Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot.CrossRef | open url image1

Schwendinger, P. J., and Giribet, G. (2005). The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19, 297–323.
The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae).CrossRef | open url image1

Smith, G. B., Eberhard, S. M., Perina, G., and Finston, T. (2012). New species of short range endemic troglobitic silverfish (Zygentoma: Nicoletiidae) from subterranean habitats in Western Australia’s semi-arid Pilbara region. Records of the Western Australian Museum 27, 101–116. open url image1

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.CrossRef | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=75f7f4dcbee031d89a4fac72e69aca2fCAS | 16928733PubMed | open url image1

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.CrossRef | 1:CAS:528:DC%2BD2sXhtFKrs7%2FP&md5=e6aee5793349cd5b40115c3d6e045e10CAS | 17654362PubMed | open url image1

Volschenk, E. S., Burbidge, A. H., Durrant, B. J., and Harvey, M. S. (2010). Spatial distribution patterns of scorpions (Scorpiones) in the arid Pilbara region of Western Australia. Records of the Western Australian Museum 78, 271–283.
Spatial distribution patterns of scorpions (Scorpiones) in the arid Pilbara region of Western Australia.CrossRef | open url image1

Weygoldt, P. (1969). ‘The Biology of Pseudoscorpions.’ (Harvard University Press: Cambridge, MA.)

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=af54727bdce7b3d34e2f5139f255073eCAS | 11975347PubMed | open url image1

With, C. J. (1906). The Danish expedition to Siam 1899–1900. III. Chelonethi. An account of the Indian false-scorpions together with studies on the anatomy and classification of the order. Oversigt over det Konigelige Danske Videnskabernes Selskabs Forhandlinger, Ser. 7 3, 1–214. open url image1

With, C. J. (1908). Remarks on the Chelonethi. Videnskabelige Meddelelser fra den Naturhistorisk Forening i Kjøbenhavn, Ser. 6 10, 1–25. open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (271 KB) Export Citation