Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The role of hatchling size in generating the intrinsic size-at-age variability of cephalopods: extending the Forsythe Hypothesis

G. T. Pecl A D , M. A. Steer A B and K. E. Hodgson A C
+ Author Affiliations
- Author Affiliations

A Marine Research Laboratories, Tasmanian Aquaculture & Fisheries Institute, University of Tasmania, Private Bag 49, Hobart, Tas. 7001, Australia.

B School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Private Bag 370, Launceston, Tas. 7250, Australia.

C Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, Tas. 7001, Australia.

D Corresponding author. Email: Gretta.Pecl@utas.edu.au

Marine and Freshwater Research 55(4) 387-394 https://doi.org/10.1071/MF03153
Submitted: 30 September 2003  Accepted: 19 March 2004   Published: 22 June 2004

Abstract

Cephalopods are characterised by extreme variability in size-at-age, with much of this variation attributed to effects of temperature and food. However, even siblings reared under identical conditions display a wide range of sizes after a period of growth. Hatchling size may represent a source of variation encompassed within adult size-at-age data (i) within a given cohort (variation in hatchling size suggests that a cohort’s growth trajectory will have a ‘staggered start’) and (ii) as hatchling size also varies as a function of incubation temperature this will vary across broader scales (i.e. between cohorts). Field-hatchling size data for Sepioteuthis australis were used in simple deterministic simulations, extending Forsythe’s (1993) temperature hypothesis, to investigate the influence of hatchling size on adult size-at-age variability. Within a cohort, our growth projections suggest that after 90 days, a large hatchling growing at a specific constant percentage daily growth rate (%BW day–1), would be approximately double the size of the small hatchling growing at exactly the same rate, irrespective of the growth rate used. When considering growth of different cohorts, decreases in hatchling size, as temperatures increase during a spring/summer spawning season, may be partially counteracting the ‘Forsythe-effect’ of increased growth rate at higher temperatures.

Extra keywords: body size, growth variability, life history, squid, temperature.


Acknowledgments

Many thanks to the participants of the Cephalopod International Advisory Council 2003 workshop and symposia for their discussions on this topic. Thank you also to Toby Patterson for constructive input.


References

Arkhipkin, A. (2004). Diversity in growth and longevity in short-lived animals: squid of the suborder Oegopsina. Marine and Freshwater Research 55, 341–355.


Alford, R. A. , and Jackson, G. D. (1993). Do cephalopods and larvae of other taxa grow asymptotically? American Naturalist 141, 717–728.
Crossref | GoogleScholarGoogle Scholar |

Arkhipkin, A. , and Laptikhovsky, V. (1994). Seasonal and interannual variability in growth and maturation of winter-spawning Illex argentinus (Cephalopoda: Ommastrephidae) in the Southwest Atlantic. Aquatic Living Resources 7, 221–232.


Arkhipkin, A. , Laptikhovsky, V. , and Middleton, D. (2000). Adaptations for cold water spawning in loliginid squid: Loligo gahi in Falkland waters. The Journal of Molluscan Studies 66, 551–564.
Crossref | GoogleScholarGoogle Scholar |

Boletzky, S. (1994). Embryonic development of cephalopods at low temperatures. Antarctic Science 6, 139–142.


Boyle, P. R. and  Ngoile, M. A. K. (1993). Population variation and growth in Loligo forbesi (Cephalopoda: loliginidae from Scottish waters. In ‘Recent Advances in Cephalopod Fisheries Biology’. (Eds. T. Okutani, R. K. O’Dor and T. Kubodera)  pp. 49–59. (Tokai University Press: Tokyo, Japan.)

Choe, S. , and Oshima, Y. (1961). On the embryonic development and the growth of the squid, Sepioteuthis lessoniana Lesson. Venus 21, 462–476.


DeRusha, R. H. , Forsythe, J. W. , and Hanlon, R. T. (1987). Laboratory growth, reproduction and life span of the Pacific pygmy octopus, Octopus digueti.  Pacific Science 41, 104–121.


Domingues, P. , Kingston, T. , Sykes, A. , and Andrade, J. (2001). Growth of young cuttlefish, Sepia officinalis (Linnaeus 1758) at the upper end of the biological distribution temperature range. Aquaculture Research 32, 923–930.
Crossref | GoogleScholarGoogle Scholar |

Forsythe, J. W. (2004). Accounting for the effect of temperature on squid growth in nature: from hypothesis to practice. Marine and Freshwater Research 55, 331–339.


Forsythe, J. W. (1993). A working hypothesis of how seasonal temperature change may impact the field growth of young cephalopods. In ‘Recent Adances in Cephalopod Fisheries Biology’. (Eds. T. Okutani, R. K. O’Dor and T. Kubodera)  pp. 133–143. (Tokai University Press: Tokyo, Japan.)

Forsythe, J. W. , and Hanlon, R. T. (1988). Effect of temperature on laboratory growth, reproduction and life span of Octopus bimaculoides.  Marine Biology 98, 369–379.


Forsythe, J. W. , and Hanlon, R. T. (1989). Growth of the Eastern Atlantic squid, Loligo forbesi Streenstrup (Mollusca: Cephalopoda). Aquaculture and Fisheries Management 20, 1–14.


Gowland, F. C. , Boyle, P. , and Noble, L. R. (2002). Morphological variation provides a method of estimating thermal niche in hatchlings of the squid Loligo forbesi (Mollusca: Cephalopoda). Journal of Zoology 258, 505–513.
Crossref | GoogleScholarGoogle Scholar |

Hatfield, E. (2000). Do some like it hot? Temperature as a possible determinant of variability in the growth of the Patagonian squid, Loligo gahi (Cephalopoda: Loliginidae). Fisheries Research 47, 27–40.
Crossref | GoogleScholarGoogle Scholar |

Hatfield, E. , Hanlon, R. , Forsythe, J. , and Grist, E. (2001). Laboratory testing of a growth hypothesis for juvenile squid Loligo pealeii (Cephalopoda: Loliginidae). Canadian Journal of Fisheries and Aquatic Sciences 58, 845–857.
Crossref | GoogleScholarGoogle Scholar |

Ikeda, Y. , Wada, Y. , Arai, N. , and Sakamoto, W. (1999). Note on size variation of body and statoliths in the oval squid Sepioteuthis lessoniana hatchlings. Journal of Marine Biological Association of the United Kingdom 79, 757–759.
Crossref | GoogleScholarGoogle Scholar |

Jackson, G. D. (2004). Advances in defining the life histories of myopsid squid. Marine and Freshwater Research 55, 357–365.
Crossref | GoogleScholarGoogle Scholar |

Jackson, G. D. , and Moltschaniwskyj, N. A. (2002). Spatial and temporal variation in growth rates and maturity in the Indo-Pacific squid Sepioteuthis lessoniana (Cephalopoda: Loliginidae). Marine Biology 140, 747–754.


Jackson, G. D. , Forsythe, J. W. , Hixon, R. F. , and Hanlon, R. T. (1997). Age, growth, and maturation of Lolliguncula brevis (Cephalopoda: Loliginidae) in the northwestern Gulf of Mexico with a comparison of length–frequency versus statolith age analysis. Canadian Journal of Fisheries and Aquatic Sciences 54, 2907–2919.
Crossref | GoogleScholarGoogle Scholar |

Jackson, G. D. , George, M. J. , and Buxton, N. G. (1998). Distribution and abundance of the squid Moroteuthis ingens (Cephalopoda: Onychoteuthidae) in the Falkland Islands region of the South Atlantic. Polar Biology 20, 161–169.
Crossref | GoogleScholarGoogle Scholar |

Laslett, G. M. , Eveson, J. P. , and Polacheck, T. (2002). A flexible maximum likelihood approach for fitting growth curves to tag–recapture data. Canadian Journal of Fisheries and Aquatic Sciences 59, 976–986.
Crossref | GoogleScholarGoogle Scholar |

Moltschaniwskyj, N. A. , and Martínez, P. (1998). Effect of temperature and food levels on the growth and condition of juvenile Sepia elliptica (Hoyle 1885): an experimental approach. Journal of Experimental Marine Biology and Ecology 229, 289–302.
Crossref | GoogleScholarGoogle Scholar |

Pecl, G.T. (2004). The in situ relationships between season of hatching, growth and condition in the southern calamary, Sepioteuthis australis. Marine and Freshwater Research 55, 429–438.


Pecl, G. T. , Moltschaniwskyj, N. A. , Tracey, S. , and Jordan, A. (2004). Inter-annual plasticity of squid life-history and population structure: Ecological and management implications. Oecologia 139, 515–524.


Sakaguchi, H. , Araki, A. , and Nakazono, A. (2002). Factors influencing body size of hatchlings, and relationships between fecundity and body weight of female Octopus vulgaris.  Bulletin of the Japanese Society of Fisheries Oceanography 66, 79–83.


Segawa, S. (1987). Life history of the oval squid, Sepioteuthis lessoniana in Kominato and adjacent waters Central Honshu, Japan. Journal of the Tokyo University of Fisheries 74, 67–105.


Segawa, S. , Yang, W. T. , Marthy, H. J. , and Hanlon, R. T. (1988). Illustrated embryonic stages of the eastern Atlantic squid Loligo forbesi.  The Veliger 30, 230–243.


Steer, M. A. (2004). Embryonic Development and Early Life History of the Southern Calamary, Sepioteuthis australis Quoy and Gaimard, 1832. PhD Thesis. (University of Tasmania: Hobart, Tasmania.)

Steer, M. , Moltschaniwskyj, N. A. , and Gowland, F. C. (2002). Temporal variability in embryonic development and mortality in the southern calamary Sepioteuthis australis: a field assessment. Marine Ecology Progress Series 243, 143–150.


Steer, M. A. , Moltschaniwskyj, N. A. , and Jordan, A. R. (2003a). Embryonic development of southern calamary (Sepioteuthis australis) within the constraints of an aggregated egg mass. Marine and Freshwater Research 54, 217–226.
Crossref | GoogleScholarGoogle Scholar |

Steer, M. A , Pecl, , and Moltschaniwskyj, (2003b). Are bigger calamary Sepioteuthis australis hatchlings more likely to recruit? A study based on statolith dimensions. Marine Ecology Progress Series 261, 175.


Steer, M. A. , Moltschaniwskyj, N. A. , Nichols, D. S. , and Miller, M. (in press). The role of temperature and maternal ration in embryo survival: using the dumpling squid Euprymna tasmanica as a model. Journal of Experimental Marine Biology and Ecology ,


Tracey, S. R. , Steer, M. A. , and Pecl, G.T. (2003)). Life history traits of the temperate mini-maximalist Idiosepius notoides (Cephalopoda: Sepioidea). Journal of The Marine Biological Association of the United Kingdom 83, 1297–1300.


Vidal, E. A. G. , DiMarco, F. P. , Wormorth, J. H. , and Lee, P. G. (2002a). Influence of temperature and food availability on survival, growth and yolk utilization in hatchling squid. Bulletin of Marine Science 71, 915–931.


Vidal, E. A. G. , DiMarco, F. P. , Wormorth, J. H. , and Lee, P. G. (2002b). Optimizing rearing conditions of hatchling loliginid squid. Marine Biology 140, 117–127.
Crossref | GoogleScholarGoogle Scholar |

Wood, J. B. , and O’Dor, R. K. (2000). Do larger cephalopods live longer? Effects of temperature and phylogeny on interspecific comparisons of age and size at maturity. Marine Biology 136, 91–99.
Crossref | GoogleScholarGoogle Scholar |