Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences

Tourists increase the contribution of autochthonous carbon to littoral zone food webs in oligotrophic dune lakes

Wade L. Hadwen A B C and Stuart E. Bunn A
+ Author Affiliations
- Author Affiliations

A Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Nathan, Qld 4111, Australia.

B Cooperative Research Centre for Sustainable Tourism.

C Corresponding author. Email:

Marine and Freshwater Research 55(7) 701-708
Submitted: 16 April 2004  Accepted: 3 August 2004   Published: 1 October 2004


Tourists can adversely influence the ecology of oligotrophic lakes by increasing algal production via direct nutrient inputs and/or re-suspension of sediments. To assess the influence of tourists on food web dynamics, we used the natural abundance of stable isotopes of carbon and nitrogen to calculate the relative importance of autochthonous and allochthonous carbon sources to littoral zone food webs across five variously visited perched dune lakes on Fraser Island, Australia. The relative importance of autochthonous (phytoplankton and periphyton) carbon to littoral zone consumers was highly variable across taxa and lakes. Despite the potential influence of algal biomass, ambient nutrient concentrations and tannin concentrations on the contribution of autochthonous carbon to littoral zone food webs, none of these variables correlated to the per cent contribution of autochthonous carbon to consumer diets. Instead, autochthonous sources of carbon contributed more to the diets of aquatic consumers in heavily visited lakes than in less visited lakes, suggesting that tourist activities might drive these systems towards an increased reliance on autochthonous carbon. The assessment of the contribution of autochthonous carbon to littoral zone food webs may represent a more robust indicator of the impact of tourists in oligotrophic lakes than standard measures of nutrient concentrations and/or algal biomass.

Extra keywords: allochthonous, monitoring, natural area management, oligotrophic lakes, wilderness areas.


Arthington, A. H. (1984). Freshwater fish of North Stradbroke, Moreton and Fraser Islands. In ‘Focus on Stradbroke’. (Ed S. I. M. Organisation)  pp. 279–282. (Boolarong Publications: Brisbane, Australia.)

Arthington, A. H. , Burton, H. B. , Williams, R. W. , and Outridge, P. M. (1986). Ecology of humic and non-humic dune lakes, Fraser Island, with emphasis on the sand infilling of Lake Wabby. Australian Journal of Marine and Freshwater Research 37, 743–764.

Arthington, A. H., Kennard, M. and  Miller, G. J. (1990). Water quality and the trophic status of Fraser Island lakes. In ‘Final Report to the Division of Environment, Department of Environment and Heritage’. (Griffith University: Brisbane, Australia.)

Baldwin, D. S. (1999). Dissolved organic matter and phosphorus leached from fresh and ‘terrestrially’ aged river red gum leaves: implications for assessing river-floodplain interactions. Freshwater Biology 41, 675–685.
CrossRef |

Bayly, I. A. E. (1964). Chemical and biological studies on some acidic lakes of east Australian sandy coastal lowlands. Australian Journal of Marine and Freshwater Research 15, 56–72.

Bayly, I. A. E. , Ebsworth, E. P. , and Wan, H. F. (1975). Studies on the lakes of Fraser Island, Queensland. Australian Journal of Marine and Freshwater Research 26, 1–13.

Beaudoin, C. P. , Prepas, E. E. , Tonn, W. M. , Wassenaar, L. I. , and Kotak, B. G. (2001). A stable carbon and nitrogen isotope study of lake food webs in Canada’s Boreal Plain. Freshwater Biology 46, 465–477.
CrossRef |

Bowling, L. C. (1988). Optical properties, nutrients and phytoplankton of freshwater coastal lakes in South-East Queensland. Australian Journal of Marine and Freshwater Research 39, 805–815.

Buckley, R. , and Pannell, J. (1990). Environmental impacts of tourism and recreation in National Parks and Conservation Reserves. The Journal of Tourism Studies 1, 24–32.

Bunn, S. E. , and Boon, P. I. (1993). What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96, 85–94.

Bunn, S. E. , Longeran, N. R. , and Kempster, M. A. (1995). Effects of acid washing on stable isotope ratios of C and N in penaeid shrimp and seagrass: Implications for food-web studies using multiple stable isotopes. Limnology and Oceanography 40, 622–625.

Bunn, S. E. , Davies, P. M. , and Winning, M. A. (2003). Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48, 619–635.
CrossRef |

France, R. L. (1995a). Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography 40, 1310–1313.

France, R. L. (1995b). Macroinvertebrate standing crop in littoral regions of allochthonous detritus accumulation: Implications for forest management. Biological Conservation 71, 35–39.
CrossRef |

France, R. L. (1999). Relationships between DOC concentration and epilithion stable isotopes in boreal lakes. Freshwater Biology 41, 101–105.
CrossRef |

Grey, J. , Jones, R. I. , and Sleep, D. (2001). Seasonal changes in the importance of the source of organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnology and Oceanography 46, 505–513.

Hadwen, W. L. , and Arthington, A. H. (2003). The significance and management implications of perched dune lakes as swimming and recreation sites on Fraser Island, Australia. The Journal of Tourism Studies 14, 35–44.

Hadwen, W. L. , Arthington, A. H. , and Mosisch, T. D. (2003). The impact of tourism on dune lakes on Fraser Island, Australia. Lakes and Reservoirs Research Management 8, 15–26.

Hadwen, W. L. , Bunn, S. E. , Arthington, A. H. , and Mosisch, T. D. (in press). Within-lake detection of the effects of tourist activities in the littoral zone of oligotrophic dune lakes. Aquatic Ecosystem Health & Management. ,

Havens, K. E. (1993). Pelagic food web structure in acidic Adirondack Mountain, New York, lakes of varying humic content. Canadian Journal of Fisheries and Aquatic Sciences 50, 2688–2691.

Havens, K. E. , East, T. L. , Meeker, R. H. , Davis, W. P. , and Steinman, A. D. (1996). Phytoplankton and periphyton responses to in situ experimental enrichment in a shallow subtropical lake. Journal of Plankton Research 18, 551–566.

Hecky, R. E. , and Hesslein, R. H. (1995). Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14, 631–653.

James, M. R. , Hawes, I. , and Weatherhead, M. (2000a). Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake. Freshwater Biology 44, 311–326.
CrossRef |

James, M. R. , Hawes, I. , Weatherhead, M. , Stanger, C. , and Gibbs, M. (2000b). Carbon flow in the littoral food web of an oligotrophic lake. Hydrobiologia 441, 93–106.
CrossRef |

James, P. M. (1984). Perched lakes and water-table windows: A note. In ‘Focus on Stradbroke. Royal Society of Queensland Symposium’. (Eds. R. J. Coleman, J. Covacevich and P. Davie)  pp. 146–147. (Boolarong Publications: Brisbane, Australia.)

Jansson, M. , Bergstrom, A.-K. , Blomqvist, P. , and Drakare, S. (2000). Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81, 3250–3255.

Jones, R. I. , Grey, J. , Sleep, D. , and Quarmby, C. (1998). An assessment, using stable isotopes, of the importance of allochthonous carbon sources to the pelagic food web in Loch Ness. Proceedings of the Royal Society of London. Series B. Biological Sciences 265, 105–111.
CrossRef |

Jones, R. I. , Grey, J. , Sleep, D. , and Arvola, L. (1999). Stable isotope analysis of zooplankton carbon nutrition in humic lakes. Oikos 86, 97–104.

Jonsson, A. , Meili, M. , Bergstrom, A.-K. , and Jansson, M. (2001). Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N. Sweden). Limnology and Oceanography 46, 1691–1700.

Karlsson, J. , Jonsson, A. , Meili, M. , and Jansson, M. (2003). Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in Northern Sweden. Limnology and Oceanography 48, 269–276.

Leggett, M. F. , Servos, M. R. , Hesslein, R. , Johannsson, O. , Millard, E. S. , and Dixon, D. G. (1999). Biogeochemical influences on the carbon isotope signatures of Lake Ontario biota. Canadian Journal of Fisheries and Aquatic Sciences 56, 2211–2218.
CrossRef |

Loeb, S. L., Reuter, J. E. and  Goldman, C. R. (1983). Littoral zone production of oligotrophic lakes: The contributions of phytoplankton and periphyton. In ‘Periphyton of Freshwater Ecosystems’. (Ed R. G. Wetzel)  pp. 161–167. (Dr W. Junk Publishers: The Hague, The Netherlands.)

Mancinelli, G. , Costantini, M. L. , and Rossi, L. (2002). Cascading effects of predatory fish exclusion on the detritus-based food web of a lake littoral zone (Lake Vico, central Italy). Oecologia 133, 402–411.
CrossRef |

McCormick, P. V. , and Stevenson, R. J. (1998). Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology 34, 726–733.
CrossRef |

McCutchan, J. H. J. , Lewis, W. M. J. , Kendall, C. , and McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos 102, 378–390.
CrossRef |

Mihuc, T. , and Toetz, D. (1994). Determination of diets of alpine aquatic insects using stable isotopes and gut analysis. American Midland Naturalist 131, 146–155.

Newsome, D., Moore, S. A., and  Dowling, R. K. (2002). ‘Natural Area Tourism: Ecology, Impacts and Management.’ (Channel View Publications: Clevedon, UK.)

Peterson, B. J. , and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293–320.
CrossRef |

Phillips, D. L. , and Koch, P. L. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125.

QDE(1999).‘Queensland Department of Environment – Descriptions of Natural World Heritage Properties: Fraser Island.’ (UNEP World Conservation Monitoring Centre: Cambridge, UK.) Available online at [Accessed 10 August 2004]

Rosenfeld, J. S. , and Roff, J. C. (1992). Examination of the carbon base in southern Ontario streams using stable isotopes. Journal of the North American Benthological Society 11, 1–10.

Scheffer, M. , Rinaldi, S. , Gragnani, A. , Mur, L. R. , and Van Nes, E. H. (1997). On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78, 272–282.

UNESCO(2001). ‘The World Heritage List.’ (The World Heritage Centre: Paris, France.) Available online at[Accessed 10 August 2004]

Vinebrooke, R. D. , and Leavitt, P. R. (1998). Direct and interactive effects of allochthonous dissolved organic matter, inorganic nutrients, and ultraviolet radiation on an alpine littoral food web. Limnology and Oceanography 43, 1065–1081.

Wang, C.-Y. , and Miko, P. S. (1997). Environmental impacts of tourism on U.S. National Parks. Journal of Travel Research 35, 31–37.

Welch, E. B. , Jacoby, J. M. , Horner, R. R. , and Seeley, M. R. (1988). Nuisance biomass levels of periphytic algae in streams. Hydrobiologia 157, 161–168.

Williamson, C. E. , Morris, D. P. , Pace, M. L. , and Olson, O. G. (1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography 44, 795–803.

Rent Article (via Deepdyve) Export Citation Cited By (20)