Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Influence of area, altitude and hydroperiod on macroinvertebrate communities in southern Brazil wetlands

Cristina Stenert A and Leonardo Maltchik A B
+ Author Affiliations
- Author Affiliations

A Laboratory of Ecology and Conservation of Aquatic Ecosystems, Av. Unisinos, 950, CEP 93.022-000, UNISINOS, São Leopoldo, RS, Brazil.

B Corresponding author. Email: maltchik@unisinos.br

Marine and Freshwater Research 58(11) 993-1001 https://doi.org/10.1071/MF07073
Submitted: 11 April 2007  Accepted: 11 October 2007   Published: 1 November 2007

Abstract

Wetlands are important ecosystems in southern Brazil because they show high productivity and biological diversity. However, conservative data indicate that ~90% of the wetlands have disappeared as a result of agricultural expansion. In this sense, the understanding of species composition and richness patterns in fragmented and natural wetlands is a priority for biodiversity conservation strategies. The main goal of the present study was to determine how much variation in macroinvertebrate richness and composition is explained by wetland area, hydroperiod and altitude. This survey was carried out in an extensive area of the Neotropical region (~280 000 km2 – southern Brazil) with a large number of wetland systems (72) and covering a wide gradient of altitude and wetland surface area. The macroinvertebrate richness was higher in permanent wetlands than intermittent ones, and intermittent wetlands supported a macroinvertebrate composition that clearly differed from those of permanent wetlands. Macroinvertebrate richness was positively affected by wetland area; however, this relationship was significant only in permanent wetlands. There is a need to promote conservation of all wetland systems in southern Brazil, regardless of their hydroperiod and area. These arguments are essential to develop conservation and management programs of wetlands in this region.

Additional keywords: biodiversity predictors, composition, functional feeding groups, Neotropical region, richness.


Acknowledgements

The authors thank Dr Fabio de Oliveira Roque, Ms Suzana Maria Fagondes de Freitas, and Álan Panatta for collaboration in the identification of the larval midges, Dr Daniel Pereira for identification of the mollusks, and Dr Norma Luiza Würdig for identification of the ostracods. This research was supported by funds from UNISINOS (02.00.023/00–0) and CNPq (52370695.2). Leonardo Maltchik holds a Brazilian Research Council – CNPq Research Productivity grant.


References

American Public Health Association (APHA) (1989). ‘Standard Methods for the Examination of Water and Wastewater.’ 17th edn. (American Public Health Association, American Water Works Association, and Water Pollution Control Federation: Washington, D.C.)

Batzer D. P., Shurtleff A. S., and Rader R. B. (2001). Sampling invertebrates in wetlands. In ‘Bioassessment and Management of North American Freshwater Wetlands’. (Eds R. B. Rader, D. P. Batzer and S. A. Wissinger.) pp. 339–354. (John Wiley and Sons: New York.)

Batzer, D. P. , Palik, B. J. , and Buech, R. (2004). Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. Journal of the North American Benthological Society 23, 50–68.
Crossref | GoogleScholarGoogle Scholar | Fernández H. R., and Domínguez E. (2001). ‘Guía para la determinación de los artrópodos bentónicos sudamericanos.’ (Universidad Nacional de Tucumán: Tucumán, Argentina.)

Furse, M. T. , Moss, D. , Wright, J. F. , and Armitage, P. D. (1984). The influence of seasonal and taxonomic factors on the ordination and classification of running-water sites in Great Britain and on the prediction of their macro-invertebrate communities. Freshwater Biology 14, 257–280.
Crossref | GoogleScholarGoogle Scholar | Gomes A. D. S., and Magalhães Jr., A. M. D. (2004). ‘Arroz irrigado no Sul do Brasil (Irrigated rice in southern Brazil).’ (Embrapa: Pelotas, RS.)

Hall, D. L. , Willig, M. R. , Moorhead, D. L. , Sites, R. W. , Fish, E. B. , and Mollhagen, T. R. (2004). Aquatic macroinvertebrate diversity of playa wetlands: the role of landscape and island biogeographic characteristics. Wetlands 24, 77–91.
Crossref | GoogleScholarGoogle Scholar | Köppen W. (1931). ‘Climatologia.’ (Fondo de Cultura Econômica: Buenos Aires.)

Lake, P. S. , Bayly, I. A. E. , and Morton, D. W. (1989). The phenology of a temporary pond in western Victoria, Australia, with special reference to invertebrate succession. Archiv fuer Hydrobiologie 115, 171–202.
Lopretto E. C., and Tell G. (1995). ‘Ecosistemas de Aguas Continentales: Metodologías para su estudio.’ (Ediciones Sur: La Prata.)

MacArthur R. H., and Wilson E. O. (1967). ‘The Theory of Island Biogeography.’ (Princeton University Press: Princeton.)

Maltchik, L. (2003). Three new wetlands inventories in Brazil. Interciencia 28, 421–423.
McCune B., and Mefford M. J. (1999). ‘PC-ORD – Multivariate Analysis of Ecological Data.’ (MjM Software Design: Oregon.)

Merritt R. W., and Cummins K. W. (1996). ‘An Introduction to the Aquatic Insects of North America.’ (Kendall/Hunt Publishing Company: Iowa.)

Miserendino, M. L. (2001). Macroinvertebrate assemblages in Andean Patagonian rivers and streams: environmental relationships. Hydrobiologia 444, 147–158.
Crossref | GoogleScholarGoogle Scholar | Mitsch W. J., and Gosselink J. G. (2000). ‘Wetlands.’ (John Wiley and Sons: New York.)

Naranjo, L. G. (1995). An evaluation of the first inventory of South American wetlands. Vegetatio 118, 125–129.
Crossref | GoogleScholarGoogle Scholar | Neiff J. J. (2001). Diversity in some tropical wetland systems of South America. In ‘Biodiversity in Wetlands: Assessment, Function and Conservation’. (Eds B. Gopal, W. J. Junk and J. A. Davis.) pp. 157–186. (Backhuys Publishers: Leiden.)

Oertli, B. , Joey, D. A. , Castella, E. , Juge, R. , Cambin, D. , and Lachavanne, J. B. (2002). Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104, 59–70.
Crossref | GoogleScholarGoogle Scholar | RADAMBRASIL (1986). ‘Levantamento de Recursos Naturais.’ (IBGE: Rio de Janeiro.)

Resh, V. H. , and Unzicker, J. D. (1975). Water quality monitoring and aquatic organisms: the importance of species identification. Journal – Water Pollution Control Federation 47, 9–19.
PubMed | Rosenberg D. M., Davies I. J., Cobb D. G., and Wiens A. P. (1997). ‘Ecological Monitoring and Assessment Network (EMAN – Environment Canada) – Protocols for Measuring Biodiversity: Benthic Macroinvertebrates in Freshwaters.’ (Department of Fisheries & Oceans, Freshwater Institute: Winnipeg, Manitoba.)

Sanderson, R. A. , Eyre, M. D. , and Rushton, S. P. (2005). Distribution of selected macroinvertebrates in a mosaic of temporary and permanent freshwater ponds as explained by autologistic models. Ecography 28, 355–362.
Crossref | GoogleScholarGoogle Scholar | Shine C., and Klemm C. (1999). ‘Wetlands, Water and the Law: Using Law to Advance Wetland Conservation and Wise Use.’ (IUCN: Gland.)

Spencer, M. , Blaustein, L. , Schwartz, S. S. , and Cohen, J. E. (1999). Species richness and the proportion of predatory animal species in temporary freshwater pools; relationships with habitat size and permanence. Ecology Letters 2, 157–166.
Crossref | GoogleScholarGoogle Scholar | Systat (2004). ‘Systat Software.’ (Richmond: California.)

Tarr, T. L. , Baber, M. J. , and Babbitt, K. J. (2005). Macroinvertebrate community structure across a wetland hydroperiod gradient in southern New Hampshire, USA. Wetlands Ecology and Management 13, 321–334.
Crossref | GoogleScholarGoogle Scholar | Wissinger S. A. (1999). Ecology of wetland invertebrates. In ‘Invertebrates in Freshwater Wetlands of North America: Ecology and Management’. (Eds D. P. Batzer, R. B. Rader and S. A. Wissinger.) pp. 1043–1086. (John Wiley and Sons: New York.)

Zimmer, K. D. , Hanson, M. A. , and Butler, M. G. (2000). Factors influencing invertebrate communities in prairie wetlands: a multivariate approach. Canadian Journal of Fisheries and Aquatic Sciences 57, 76–85.
Crossref | GoogleScholarGoogle Scholar |