Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream

Juliana Silva França A , Rener Silva Gregório A , Joana D’Arc de Paula B , José Francisco Gonçalves Júnior A D , Fernando Alves Ferreira C and Marcos Callisto A E
+ Author Affiliations
- Author Affiliations

A Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Laboratório de Ecologia de Bentos, CP. 486, CEP. 30.970-201, Belo Horizonte, MG, Brazil.

B Instituto Nacional de Pesquisas da Amazônia, Departamento de Ecologia, Av. André Araújo, 2936, Aleixo, CEP. 69.060-001, Manaus, Amazonas, Brazil.

C Universidade Estadual de Maringá, Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura, Laboratório de Limnologia e Macrófitas Aquáticas, Av. Colombo, 5790/Bloco H-90, CEP. 87.020-900, Maringá, PR, Brazil.

D Present address. Laboratório de Limnologia, Departamento de Ecologia, Universidade de Brasília, 70.910-900, Brasília, DF, Brazil. Email: jfjunior@unb.br

E Corresponding author. Email: callistom@ufmg.br

Marine and Freshwater Research 60(10) 990-998 https://doi.org/10.1071/MF08247
Submitted: 28 August 2008  Accepted: 14 April 2009   Published: 20 October 2009

Abstract

Riparian vegetation provides the nutrient and energy input that maintains the metabolism and biodiversity in tropical headwater streams. In the present study, it was hypothesised that ~30% of riparian plant species contribute over 70% of coarse particulate organic matter and, because tropical plants are perennial and semi-deciduous, it was expected that leaf fall would occur year round. The aims of the present study were to evaluate the composition and structure of the plant riparian zone and the input and associated benthic stock of organic matter. The riparian vegetation was composed of 99 taxa. The most abundant plant species were Tapirira obtusa, Sclerolobium rugosum, Croton urucurana, Byrsonima sp. and Inga sp. The input and benthic stock showed a seasonal pattern, with higher values recorded at the end of the dry season and at the beginning of tropical storms. The biomass contributed monthly by the vegetation ranged from 28 ± 6 g m–2 to 38 ± 11 g m–2, and the mean monthly benthic standing stock was 138 ± 57 g m–2. The results illustrate the importance of riparian vegetation as an energy source to tropical streams and how individual plant species contribute to organic matter inputs in these ecosystems.

Additional keywords: biodiversity, Cerrado, productivity, rainforest, riparian zone.


Acknowledgements

We thank our colleagues at the Laboratório de Ecologia de Bentos/UFMG for field and laboratory assistance, and Mr Diego Rodrigues Macedo for preparing the map of the study area. We are especially grateful to Mr Leotacílio da Fonseca, a member of the staff of the Estação Ambiental de Peti/Companhia Energética de Minas Gerais (CEMIG), for providing invaluable assistance, logistical support and permission to collect our plant material. This study was funded by grants from the CEMIG, with additional funding from the Conselho Nacional de Pesquisas e Desenvolvimento, Fundação de Amparo à Pesquisa do Estado de Minas Gerais and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Comments provided by two anonymous reviewers and the Editor, Andrew Boulton, were very helpful in improving the manuscript.


References

Afonso, A. A. O. , Henry, R. , and Rodella, C. S. M. (2000). Allochthonous matter input in two different stretches of a headstream (Itatinga, São Paulo, Brazil). Brazilian Archives of Biology and Technology 43, 335–343.
Crossref | GoogleScholarGoogle Scholar | Allan J. D. (1995). ‘Stream Ecology: Structure and Function of Running Waters.’ (Chapman and Hall: London.)

Almeida S. P., Proença C. E. B., Sano S. M., and Ribeiro J. F. (1998). ‘Cerrado: Espécies Vegetais e Úteis.’ (EMBRAPA-CPAC: Planaltina, Brazil.)

Angermeier P. L., and Karr J. R. (1984). Fish communities along environmental gradients in a system of tropical streams. In ‘Evolutionary Ecology of Neotropical Freshwater Fishes’. (Ed. T. M. Zaret.) pp. 39–57. (Dr W. Junk Publishers: The Hague, The Netherlands.)

Brito, E. R. , Martins, S. V. , Oliveira Filho, A. T. , Silva, E. , and Silva, A. F. (2006). Estrutura fitossociológica de um fragmento natural de floresta inundável em área de orizicultura irrigada, município de Lagoa da Confusão, Tocantins. Revista Árvore 30, 829–836.
Catharino E. L. M. (1989). Florística de matas ciliares. In ‘Simpósio sobre Mata Ciliar’. (Org. Luiz Mauro Barbosa.) pp. 61–70. (Fundação Cargill: Campinas, Brazil.)

Cillero, C. , Pardo, I. , and López, E. S. (1999). Comparisons of riparian vs. over stream trap location in the estimation of vertical litterfall inputs. Hydrobiologia 416, 171–179.
Crossref | GoogleScholarGoogle Scholar | CAS | Cronquist A. (1988). ‘The Evolution and Classification of Flowering Plants.’ 2nd edn. (The New York Botanical Garden: New York.)

Cummins, K. W. , Peterson, R. C. , Howard, F. O. , Wuychek, J. C. , and Holt, V. I. (1973). The utilization of leaf litter by stream detritivores. Ecology 54, 336–345.
Crossref | GoogleScholarGoogle Scholar | Lima W. P., and Zakia M. J. B. (2000). Hidrologia em matas ciliares. In ‘Matas Ciliares: Conservação e Recuperação’. (Eds R. Rodrigues and H. Leitão Filho.) pp. 33–44. (Universidade de São Paulo/FAPESP: São Paulo, Brazil.)

Maridet, L. , Wasson, J. G. , Philippe, M. , and Amoros, C. (1995). Benthic organic matter dynamics in three streams: riparian vegetation or bad morphology control. Archiv für Hydrobiologie 132, 415–425.
Mori S. A., Silva L. A. M., Lisboa G., and Coradin L. (1989). ‘Manual de Manejo do Herbário Fanerogâmico.’ 2nd edn. (Centro de Pesquisas do Cacau: Ilhéus, Brazil.)

Moulton, T. P. , and Magalhães, S. A. P. (2003). Responses of leaf processing to impacts in streams in Atlantic Rain Forest, Rio de Janeiro, Brazil – a test of the biodiversity–ecosystem functioning relationship? Brazilian Journal of Biology 63, 87–95.
Crossref | GoogleScholarGoogle Scholar | CAS | Mueller-Dombois D., and Ellenberg G. H. (1974). ‘Aims and Methods of Vegetation Ecology.’ (Wiley & Sons: New York.)

Naiman, R. , and Décamps, H. (1997). The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28, 621–658.
Crossref | GoogleScholarGoogle Scholar | Oliveira-Filho A. T., and Ratter J. A. (2001). Padrões florísticos das matas ciliares da região do cerrado e a evolução das paisagens do Brasil Central durante o Quaternário Tardio. In ‘Matas Ciliares: Conservação e Recuperação’. (Eds R. Rodrigues and H. Leitão Filho.) pp. 73–79. (Universidade de São Paulo/FAPESP: São Paulo, Brazil.)

Petersen, R. C. , and Cummins, K. W. (1974). Leaf processing in a woodland stream. Freshwater Biology 4, 343–368.
Crossref | GoogleScholarGoogle Scholar | Polhill R. M., and Raven P. H. (1981). ‘Advances in Legume Systematics.’ (Royal Botanical Gardens, Kew: London.)

Pozo, J. , Gonzalez, E. , Diez, J. R. , Molinero, J. , and Elosegui, A. (1997). Inputs of particulate organic matter to streams with different riparian vegetation. Journal of the North American Benthological Society 16, 602–611.
Crossref | GoogleScholarGoogle Scholar | Prach K., Jeník J., and Large A. R. G. (1996). ‘Floodplain Ecology and Management. The Luznice River in the Trebon Biosphere Reserve, Central Europe.’ (SPB Academic Publishing: Amsterdam.)

Reid, D. J. , Lake, P. S. , Quinn, G. P. , and Reich, P. (2008). Association of reduced riparian vegetation cover in agricultural landscapes with coarse detritus dynamics in lowland streams. Marine and Freshwater Research 59, 998–1014.
Crossref | GoogleScholarGoogle Scholar | Sano S. M., and Almeida S. P. (1998). ‘Cerrado: Ambiente e Flora.’ (EMBRAPA-CPAC: Planaltina, Brazil.)

Selva, E. C. , Couto, E. G. , Johnson, M. S. , and Lehmann, J. (2007). Litterfall production and fluvial export in headwater catchments of the southern Amazon. Journal of Tropical Ecology 23, 329–335.
Crossref | GoogleScholarGoogle Scholar | Taiz L., and Zeiger E. (2004). ‘Fisiologia Vegetal.’ 3rd edn. (Artmed: Porto Alegre, Brazil.)

Uieda, V. S. , and Kikuchi, R. M. (1995). Entrada de material alóctone (detritos vegetais e invertebrados terrestres) num pequeno curso de água corrente na Cuesta de Botucatu, São Paulo. Acta Limnologica Brasiliensia 7, 105–114.
Wantzen K. M., Yule C. M., Mathooko J. M., and Pringle C. M. (2008). Organic matter processing in tropical streams. In ‘Tropical Stream Ecology’. (Ed. D. Dudgeon.) pp. 43–64. (Elsevier: Amsterdam.)

Webster, J. R. , and Meyer, J. L. (1997). Organic matter budgets for streams: a synthesis. Journal of the North American Benthological Society 16, 141–161.
Crossref | GoogleScholarGoogle Scholar | Webster J. R., Wallace J. B., and Benfield E. F. (1995). Organic processes in streams of the eastern United States. In ‘Ecosystems of the World: River and Stream Ecosystems’. (Eds C. E. Cushing, K. W. Cummins and G. W. Minshall.) pp. 117–187. (Elsevier: Amsterdam.)

Webster, J. R. , Benfield, E. F. , Ehrman, T. P. , Schaeffer, M. A. , and Tank, J. L. , et al. (1999). What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshwater Biology 41, 687–705.
Crossref | GoogleScholarGoogle Scholar | Zar J. H. (1996). ‘Biostatistical Analysis.’ 3rd edn. (Prentice-Hall: New York.)