Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Lipid and mercury profiles of 61 mid‐trophic species collected off south‐eastern Australia

H. Pethybridge A B D , R. Daley A , P. Virtue B , E. C. V. Butler A , D. Cossa C and P. D. Nichols A
+ Author Affiliations
- Author Affiliations

A CSIRO Wealth from Oceans National Research Flagship and CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, Tas. 7001, Australia.

B IMAS, University of Tasmania, Private Bag 129, Hobart, Tas. 7001, Australia.

C IFREMER, Centre de Méditerranée, BP 330, F.83507 La Seyne sur mer, France.

D Corresponding author. Email: heidi.pethybridge@csiro.au

Marine and Freshwater Research 61(10) 1092-1108 https://doi.org/10.1071/MF09237
Submitted: 22 September 2009  Accepted: 14 April 2010   Published: 14 October 2010

Abstract

Total mercury (Hg) concentrations and lipid composition data, including fatty acid profiles, for 61 mid‐trophic species (fish, cephalopods, crustaceans) collected from continental slope waters off south‐east Australia were examined. Overall, Hg concentrations were greatest in fish (0.01–0.30 μg g–1 ww) (with highest content found in barracouta (Thyrsites atun) and whiptails (Coelorinchus fasciatus)), compared with cephalopods (0.01 and 0.17 μg g–1 ww) and crustaceans (<0.04 μg g–1 ww). Lipid composition varied between species and within habitat (mesopelagic, bathypelagic and benthic). Mean total lipid content ranged from 0.5 to 13.2% ww, and in most species was dominated by triacylglycerols and phospholipids. In fish and squid, fatty acids were generally dominated by monounsaturated fatty acids, whereas crustaceans were higher in polyunsaturated fatty acids. Multidimensional scaling analyses separated species into groupings according to their fatty acid composition that could be interpreted with taxonomic, trophic and habitat information. Discriminant function analyses indicated the most influential (predictor) fatty acids for each group. Biochemical profile classifications can be used in wider trophodynamic studies to understand contaminant transfer, trophic relationships and community dynamics in marine environments.

Additional keywords: deep‐sea, ecosystem dynamics, fatty acids, lipids, mercury, mid‐trophic prey, mid‐water.


Acknowledgements

We thank the captain and crew of the ‘Adriatic Pearl’ for sample collection. We are grateful to Mark Lewis, Alastair Graham and Peter Last for taxonomically identifying prey species. We thank Bernard Averty and Stephan Guedron for their assistance with mercury analyses. Dianna Furlani supplied details of the MIDOC sampling method. Daniel Holdsworth maintained the GC‐MS. We thank Cathy Bulman, Beth Fulton and two anonymous referees for helpful comments on the manuscript. This project was partly funded by the Goddard Sapin‐Jaloustre Trust Fund in association with IFREMER Centre de Nantes, France.


References

Abolmasova, G. I. , Shul’man, G. Y. , Shchepkina, A. M. , and Dzhiganshin, G. F. (1990). Content of dry matter in the liver of the squid Sthenoteuthis pteropus in the eastern Atlantic Ocean as an index of trophicity. Oceanology (Moscow) 30, 359–362.
Cossa D., Coquery M., Nahklé K., and Claisse D. (2002). Dosage du mercure total and du monométhylmercury dans les organismes et les sédiments marins. Méthodes d’analyse en milieu marin. Editions Ifremer, Plouzané, France.

Cossa, D. , Averty, B. , and Pirrone, N. (2009). The origin of methylmercury in the open Mediterranean water column. Limnology and Oceanography 54, 837–844.
Food Standards Australia New Zealand (FSANZ) (2007). Mercury in fish. Available at http://www.foodstandards.gov.au [accessed 29 January 2009].

Fulton, E. A. , Smith, A. D. M. , and Johnson, C. R. (2004). Biogeochemical marine ecosystem models. I. A model of marine bay ecosystems. Ecological Modelling 174, 267–307.
Crossref | GoogleScholarGoogle Scholar | Gordon J. D. M., Merrett N. R., and Haedrich R. L. (1995). Environmental and biological aspects of slope dwelling fishes of the North Atlantic. In ‘Deep‐water Fisheries of the North Atlantic Oceanic Slope’. (Ed. A. G. Hooper.) pp. 1–26. (Kluwer: Dordrecht, The Netherlands.)

Henderson, R. J. , and Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research 26, 281–347.
Crossref | GoogleScholarGoogle Scholar | PubMed | Landrum P. F., and Fisher S. W. (1998). Influence of lipids on the bioaccumulation and trophic transfer of organic contaminants in aquatic organisms. In ‘Lipids in Freshwater Ecosystems’. (Eds M. Arts and B. Wainman.) pp. 203–234. (Springer: New York.)

Martins, I. , Costa, V. , Porteiro, F. , Cravo, A. , and Santos, R. S. (2001). Mercury concentrations in invertebrates from mid‐Atlantic ridge hydrothermal vent fields. Journal of the Marine Biological Association of the United Kingdom 81, 913–915.
Nichols P. D., Virtue P., Mooney B. D., Elliott N. G., and Yearsley G. K. (Eds) (1998). Seafood the good food: the oil content and composition of Australian commercial fishes, shellfishes and crustaceans. FRDC Project 95/122, CSIRO Marine Research, Australia.

Parrish C. C., Abrajano T. A., Budge S. M., Helleur R. J., Hudson E. D., Pulchan K., and Ramos C. (2000). Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In ‘The Handbook of Environmental Chemistry, Vol 5’. (Ed. P. Wangersky.) pp. 193–223. (Springer: Berlin.)

Pethybridge H. (2004). Diet of an ommastrephid squid, Todarodes filippovae from east and south Tasmania: stomach content and signature lipid analysis. B.Sc. (Hons) Thesis, University of Tasmania, Hobart.

Pethybridge H. R. (2010). Ecology and physiology of deepwater chondrichthyans. Ph.D. Thesis, University of Tasmania, Hobart.

Phillips, K. L. , Jackson, G. D. , and Nichols, P. D. (2001). Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Island: stomach contents and fatty acid analysis. Marine Ecology Progress Series 215, 179–189.
Crossref | GoogleScholarGoogle Scholar | Pigott G. M., and Tucker B. W. (1990). Adding and removing heat. In ‘Seafoods: Effects of Technology on Nutrition’. pp. 104–135. (Marcel Dekker: New York.)

Pike, I. (2005). Eco‐efficiency in aquaculture: global catch of wild fish used in aquaculture. International Aquafeed 8, 38–40.
Sargent J. R. (1989). Ether‐linked glycerides in marine animals. In ‘Marine Biogenic Lipids, Fats, and Oils, Vol. 1’. (Ed. R. G. Ackman.) pp. 175–197. (CRC Press: Boca Raton, FL.)

Sargent J. R., Bell J. G., Bell M. V., Henderson R. J., and Tocher D. R. (1993). The metabolism of phospholipids and polyunsaturated fatty acids in fish. In ‘Aquaculture: Fundamentals and Applied Research’. (Eds B. Lahlou and P. Vitiello.) pp. 103–124. (Coastal and Estuarine Studies, American Geophysical Union: Washington, DC.)

Seibel, B. A. , and Drazen, J. C. (2007). The rates of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philosophical Transactions of the Royal Society B 362, 2061–2078.
Crossref | GoogleScholarGoogle Scholar | Wiener J. G., Krabbenhoft D. P., Heinz G. H., and Scheuhammer A. M. (2003). Ecotoxicology of mercury. In ‘Handbook of Ecotoxicology’, 2nd edn. (Eds D. J. Hoffman, B. A. Rattner, G. A. Burton Jr and J. Cairns Jr.) pp. 409–463. (CRC Press: Boca Raton, FL.)

Wilson G. A. (2004). The lipid composition of Patagonian toothfish from the Macquarie Island region: ecological and dietary implications within a regional food web. Ph.D. Thesis, University of Tasmania, Hobart.