Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A non-lethal sampling method for stable carbon and nitrogen isotope studies of tropical fishes

Timothy D. Jardine A C , Richard J. Hunt B , Bradley J. Pusey A and Stuart E. Bunn A
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, Griffith University, Nathan, Qld 4111, Australia.

B Queensland Department of Environment and Resource Management, Mareeba, Qld 4880, Australia.

C Corresponding author. Email: t.jardine@griffith.edu.au

Marine and Freshwater Research 62(1) 83-90 https://doi.org/10.1071/MF10211
Submitted: 6 August 2010  Accepted: 6 November 2010   Published: 18 January 2011

Abstract

Despite prior studies showing good agreement between fin and muscle isotope ratios in temperate fishes, the non-lethal method of fin sampling has yet to become a standard technique in isotopic food-web studies, and the relationship between the two tissues has never been tested in the tropics. We hypothesised that fin and muscle δ13C and δ15N would be strongly correlated in tropical fishes, thus allowing non-lethal sampling of these species. To test this hypothesis, we analysed fin and muscle tissues from 174 tropical fishes representing 27 species from the Mitchell River, Queensland, Australia. Fin tissue was a strong predictor of muscle-tissue δ13C (r2 = 0.91 for all species) and was slightly enriched in 13C (0.9‰), consistent with the results of studies on temperate species. Fin tissue was a poorer predictor of muscle-tissue δ15N (r2 = 0.56 for all species) although the mean difference between the tissues was small (<0.1‰). Differences were smallest in the largest fish, possibly because the elemental composition (%N) of fin more closely resembled that of muscle. These measurements provide more impetus for increased use of fin tissue as a non-destructive means of testing hypotheses about fish food webs in the tropics and elsewhere.

Additional keywords: δ13C, δ15N, fin tissue, fractionation, muscle tissue, size, turnover.


References

Araujo-Lima, C. A. R. M., Forsberg, B. R., Victoria, R. L., and Martinelli, L. A. (1986). Energy sources for detritivorous fishes in the Amazon. Science 234, 1256–1258.
Energy sources for detritivorous fishes in the Amazon.CrossRef | 1:STN:280:DC%2BC3cvivFOitA%3D%3D&md5=4472399d4b318f14a55c7d4af61252dbCAS | 17778007PubMed |

Baker, R. F., Blanchfield, P. J., Paterson, M. J., Flett, R. J., and Wesson, L. (2004). Evaluation of nonlethal methods for the analysis of mercury in fish tissue. Transactions of the American Fisheries Society 133, 568–576.
Evaluation of nonlethal methods for the analysis of mercury in fish tissue.CrossRef | 1:CAS:528:DC%2BD2cXlsVCqsLs%3D&md5=e1a98710a713ed180762a0bcef65bd32CAS |

Brodeur, N. N., Noel, M. V., Venter, O., Bernatchez, L., Dayanandan, S., et al. (2008). No evidence of kin bias in dispersion of young-of-the-year Atlantic salmon Salmo salar L. in a natural stream. Journal of Fish Biology 73, 2361–2370.
No evidence of kin bias in dispersion of young-of-the-year Atlantic salmon Salmo salar L. in a natural stream.CrossRef |

Bunn, S. E., Loneragan, N. R., and Kempster, M. A. (1995). Effects of acid washing on stable-isotope ratios of C and N in penaeid shrimp and seagrass – implications for food-web studies using multiple stable isotopes. Limnology and Oceanography 40, 622–625.
Effects of acid washing on stable-isotope ratios of C and N in penaeid shrimp and seagrass – implications for food-web studies using multiple stable isotopes.CrossRef | 1:CAS:528:DyaK2MXotFGms7c%3D&md5=974b5e693f1bed4825e0b9ec598ab3deCAS |

Cabana, G., and Rasmussen, J. B. (1996). Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences, USA 93, 10 844–10 847.
Comparison of aquatic food chains using nitrogen isotopes.CrossRef | 1:CAS:528:DyaK28XmtVOlu70%3D&md5=18b25825719fa7e3f8537f0cdda03ed7CAS |

Champagne, C. E., Austin, J. D., Jelks, H. L., and Jordan, F. (2008). Effects of fin clipping on survival and position-holding behavior of brown darters, Etheostoma edwini. Copeia 2008, 916–919.
Effects of fin clipping on survival and position-holding behavior of brown darters, Etheostoma edwini.CrossRef |

Cherel, Y., Fontaine, C., Richard, P., and Labat, J.-P. (2010). Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnology and Oceanography 55, 324–332..
| 1:CAS:528:DC%2BC3cXitVSgur0%3D&md5=b3037182b6aaa3f44daf93c606540d8bCAS |

Church, M. R., Ebersole, J. L., Rensmeyer, K. M., Couture, R. B., Barrows, F. T., et al. (2009). Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 66, 1–5.
Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotopes.CrossRef | 1:CAS:528:DC%2BD1MXit1agt7c%3D&md5=496330abc2b26df406d271cd6d5691f0CAS |

Cox, M. K., and Hartman, K. J. (2005). Nonlethal estimation of proximate composition in fish. Canadian Journal of Fisheries and Aquatic Sciences 62, 269–275.
Nonlethal estimation of proximate composition in fish.CrossRef |

Dalerum, F., and Angerbjorn, A. (2005). Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658.
Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes.CrossRef | 1:STN:280:DC%2BD2MvmsFKhtg%3D%3D&md5=7c955ecb10c80aff3b90d145a0dc0c53CAS | 16041545PubMed |

Davies  P. M., Bunn  S. E., and Hamilton  S. K. (2008). Primary production in tropical streams and rivers. In ‘Tropical Stream Ecology’. (Ed. D. Dudgeon.) pp. 23–42. (Academic Press: San Diego, CA, USA.)

Dube, M. G., Benoy, G. A., Blenkinsopp, S., Ferone, J. M., Brua, R. B., et al. (2005). Application of multi-stable isotope (C-13, N-15, S-34, Cl-37) assays to assess spatial separation of fish (longnose sucker Catostomus catostomus) in an area receiving complex effluents. Water Quality Research Journal of Canada 40, 275–287..
| 1:CAS:528:DC%2BD2MXht1yksrfN&md5=eb313b776acad3c3e9805acaaeb18850CAS |

Finlay, J. C., Khandwala, S., and Power, M. E. (2002). Spatial scales of carbon flow in a river food web. Ecology 83, 1845–1859.
Spatial scales of carbon flow in a river food web.CrossRef |

Forsberg, B. R., Araujo-Lima, C. A. R. M., Martinelli, L. A., Victoria, R. L., and Bonassi, J. A. (1993). Autotrophic carbon sources for fish of the central Amazon. Ecology 74, 643–652.
Autotrophic carbon sources for fish of the central Amazon.CrossRef |

German, D. P., and Miles, R. D. (2010). Stable carbon and nitrogen incorporation in blood and fin tissue of the catfish Pterygoplichthys disjunctivus (Siluriformes, Loricariidae). Environmental Biology of Fishes 89, 117–133.
Stable carbon and nitrogen incorporation in blood and fin tissue of the catfish Pterygoplichthys disjunctivus (Siluriformes, Loricariidae).CrossRef |

Gremillion, P. T., Cizdziel, J. V., and Cody, N. R. (2005). Caudal fin mercury as a non-lethal predictor of fish-muscle mercury. Environmental Chemistry 2, 96–99.
Caudal fin mercury as a non-lethal predictor of fish-muscle mercury.CrossRef | 1:CAS:528:DC%2BD2MXlvVChs7k%3D&md5=59c037c039e57bdef6f5eea018b1940bCAS |

Hanisch, J. R., Tonn, W. M., and Paszkowski, C. A. (2010). δ13C and δ15N signatures in muscle and fin tissues: non-lethal sampling methods for stable isotope analysis of salmonids. North American Journal of Fisheries Management 30, 1–11..

Hansen, T., and Sommer, U. (2007). Increasing the sensitivity of δ13C and δ15N measurements by a high sensitivity elemental analyzer connected to an isotope ratio mass spectrometer. Rapid Communications in Mass Spectrometry 21, 314–318.
Increasing the sensitivity of δ13C and δ15N measurements by a high sensitivity elemental analyzer connected to an isotope ratio mass spectrometer.CrossRef | 1:CAS:528:DC%2BD2sXitValsb0%3D&md5=82a0974e38eb803c786374a12193bc5cCAS | 17200974PubMed |

Herzka, S. Z., and Holt, G. J. (2000). Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies. Canadian Journal of Fisheries and Aquatic Sciences 57, 137–147.
Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies.CrossRef |

Hesslein, R. H., Hallard, K. A., and Ramlal, P. (1993). Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by delta-S-34, delta-C-13, and delta-N-15. Canadian Journal of Fisheries and Aquatic Sciences 50, 2071–2076.
Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by delta-S-34, delta-C-13, and delta-N-15.CrossRef | 1:CAS:528:DyaK2cXktVOqs7o%3D&md5=3816eb81f776e67e81f72a382caaba1aCAS |

Jardine, T. D., and Cunjak, R. A. (2005). Analytical error in stable isotope ecology. Oecologia 144, 528–533.
Analytical error in stable isotope ecology.CrossRef | 15761780PubMed |

Jardine, T. D., Gray, M. A., McWilliam, S. M., and Cunjak, R. A. (2005). Stable isotope variability in tissues of temperate stream fishes. Transactions of the American Fisheries Society 134, 1103–1110.
Stable isotope variability in tissues of temperate stream fishes.CrossRef | 1:CAS:528:DC%2BD2MXhtF2qtrrM&md5=317907b41adb145fb3f124fec9edcafdCAS |

Jardine, T. D., Kidd, K. A., and Fisk, A. T. (2006). Applications, considerations and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environmental Science & Technology 40, 7501–7511.
Applications, considerations and sources of uncertainty when using stable isotope analysis in ecotoxicology.CrossRef | 1:CAS:528:DC%2BD28XhtFWnurfK&md5=7a8ecc4176efa3b2160d12f4240ac31bCAS | 17256487PubMed |

Kelly, M. H., Hagar, W. G., Jardine, T. D., and Cunjak, R. A. (2006). Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: how scale and fin tissue compare with muscle tissue. North American Journal of Fisheries Management 26, 921–925.
Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: how scale and fin tissue compare with muscle tissue.CrossRef |

Layman, C. A., Arrington, D. A., Montana, C. G., and Post, D. M. (2007). Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88, 42–48.
Can stable isotope ratios provide for community-wide measures of trophic structure?CrossRef | 17489452PubMed |

Logan, J. M., Jardine, T. D., Miller, T. J., Bunn, S. E., Cunjak, R. A., et al. (2008). Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. Journal of Animal Ecology 77, 838–846.
Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods.CrossRef | 18489570PubMed |

Martinez del Rio, C. M., Wolf, N., Carleton, S. A., and Gannes, L. Z. (2009). Isotopic ecology ten years after a call for more laboratory experiments. Biological Reviews of the Cambridge Philosophical Society 84, 91–111.
Isotopic ecology ten years after a call for more laboratory experiments.CrossRef | 19046398PubMed |

Masci, K. D., Ponniah, M., and Hughes, J. M. (2008). Patterns of connectivity between the Lake Eyre and Gulf drainages, Australia: a phylogeographic approach. Marine and Freshwater Research 59, 751–760.
Patterns of connectivity between the Lake Eyre and Gulf drainages, Australia: a phylogeographic approach.CrossRef |

McCarthy, I. D., and Waldron, S. (2000). Identifying migratory Salmo trutta using carbon and nitrogen isotope ratios. Rapid Communications in Mass Spectrometry 14, 1325–1331.
Identifying migratory Salmo trutta using carbon and nitrogen isotope ratios.CrossRef | 1:CAS:528:DC%2BD3cXls1yrsbo%3D&md5=1d743677318d0583fa599e903ddca75bCAS | 10920350PubMed |

McConnaughey, T. A., Burdett, J., Whelan, J. F., and Paull, C. K. (1997). Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta 61, 611–622.
Carbon isotopes in biological carbonates: respiration and photosynthesis.CrossRef | 1:CAS:528:DyaK2sXhsFagtrg%3D&md5=b09ad5fb8626c5e4fa80865357f3ccd3CAS |

McCutchan, J. H., Lewis, W. M., Kendall, C., and McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390.
Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur.CrossRef | 1:CAS:528:DC%2BD3sXmsl2qurg%3D&md5=b2ea71c7379fee798030efc05327b9e0CAS |

Pinnegar, J. K., and Polunin, N. V. C. (1999). Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13, 225–231.
Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions.CrossRef |

Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83, 703–718.
Using stable isotopes to estimate trophic position: models, methods and assumptions.CrossRef |

Pratt, T. C., and Fox, M. G. (2002). Effect of fin clipping on overwinter growth and survival of age-0 walleyes. North American Journal of Fisheries Management 22, 1290–1294.
Effect of fin clipping on overwinter growth and survival of age-0 walleyes.CrossRef |

Pusey  B., Kennard  M., and Arthington  A. (2004). ‘Freshwater Fishes of North-Eastern Australia.’ (CSIRO Publishing: Melbourne.)

Rasmussen, J. B., Trudeau, V., and Morinville, G. (2009). Estimating the scale of fish feeding movements in rivers using δ13C signature gradients. Journal of Animal Ecology 78, 674–685.
Estimating the scale of fish feeding movements in rivers using δ13C signature gradients.CrossRef | 19076260PubMed |

Rolfhus, K. R., Sandheinrich, M. B., Wiener, J. G., Bailey, S. W., Thoreson, K. A., et al. (2008). Analysis of fin clips as a nonlethal method for monitoring mercury in fish. Environmental Science & Technology 42, 871–877.
Analysis of fin clips as a nonlethal method for monitoring mercury in fish.CrossRef | 1:CAS:528:DC%2BD1cXhsFKhug%3D%3D&md5=50a915d62cff7393ec80598de35f61c1CAS | 18323115PubMed |

Sanderson, B. L., Tran, C. D., Coe, H. J., Pelekis, V., Steel, E. A., et al. (2009). Nonlethal sampling of fish caudal fins yields valuable stable isotope data for threatened and endangered fishes. Transactions of the American Fisheries Society 138, 1166–1177.
Nonlethal sampling of fish caudal fins yields valuable stable isotope data for threatened and endangered fishes.CrossRef |

Solomon, C. T., Weber, P. K., Cech, J. J., Ingram, B. L., Conrad, M. E., et al. (2006). Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63, 79–89.
Experimental determination of the sources of otolith carbon and associated isotopic fractionation.CrossRef | 1:CAS:528:DC%2BD28XitFWitLY%3D&md5=5927f84a71c27af5d3909d1525224bc0CAS |

Suring, E., and Wing, S. R. (2009). Isotopic turnover rate and fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias): consequences for ecological studies. Journal of Experimental Marine Biology and Ecology 370, 56–63.
Isotopic turnover rate and fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias): consequences for ecological studies.CrossRef | 1:CAS:528:DC%2BD1MXhvFGrtbk%3D&md5=01a17132adf9489cb663e9d941073a72CAS |

Suzuki, K. W., Kasai, A., Nakayama, K., and Tanaka, M. (2005). Differential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration. Canadian Journal of Fisheries and Aquatic Sciences 62, 671–678.
Differential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration.CrossRef |

Thompson, D. A., and Blankenship, H. L. (1997). Regeneration of adipose fins given complete and incomplete clips. North American Journal of Fisheries Management 17, 467–469.
Regeneration of adipose fins given complete and incomplete clips.CrossRef |

Vander Haegen, G. E., Blankenship, H. L., Hoffmann, A., and Thompson, D. A. (2005). The effects of adipose fin clipping and coded wire tagging on the survival and growth of spring Chinook salmon. North American Journal of Fisheries Management 25, 1161–1170.
The effects of adipose fin clipping and coded wire tagging on the survival and growth of spring Chinook salmon.CrossRef |

Vander Zanden, M. J., Casselman, J. M., and Rasmussen, J. B. (1999). Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467.
Stable isotope evidence for the food web consequences of species invasions in lakes.CrossRef | 1:CAS:528:DyaK1MXmslyru78%3D&md5=3575e47be233b380931ebdc07876cfe3CAS |

Vanderklift, M. A., and Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169–182.
Sources of variation in consumer-diet δ15N enrichment: a meta-analysis.CrossRef | 12802678PubMed |

Winemiller, K. O. (1990). Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60, 331–367.
Spatial and temporal variation in tropical fish trophic networks.CrossRef |



Rent Article (via Deepdyve) Export Citation Cited By (31)