Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Contrasting intra-annual patterns of six biotic groups with different dispersal mode and ability in Mediterranean temporary ponds

Dani Boix A E , Maria Carmela Caria B , Stéphanie Gascón A , Maria Antonietta Mariani C , Jordi Sala A , Albert Ruhí A D , Jordi Compte A B and Simonetta Bagella B

A GRECO, Institute of Aquatic Ecology, University of Girona, Campus Montilivi, Faculty of Sciences, E-17071 Girona, Spain.

B Dipartimento di Scienze della Natura e del Territorio, University of Sassari, Via Piandanna, I-07100 Sassari, Italy.

C Dipartimento di Architettura, Design e Urbanistica, University of Sassari, Via Piandanna 4, I-07100 Sassari, Italy.

D Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ 85281, USA.

E Corresponding author. Email: dani.boix@udg.edu

Marine and Freshwater Research - http://dx.doi.org/10.1071/MF15435
Submitted: 18 November 2015  Accepted: 4 June 2016   Published online: 15 August 2016

Abstract

The temporal patterns of six biotic groups (from phytoplankton to amphibians) and their responses to environmental variation were studied in a set of Mediterranean temporary ponds. These biotic groups differed widely in dispersal ability and dispersal mode (active v. passive) and, for this reason, we predicted that they would exhibit different temporal patterns and responses to environmental factors. Six temporary ponds were sampled three times: at the beginning (January), middle (March) and end (May) of the hydroperiod. For each biotic group, we evaluated temporal variation in composition, species richness, among-pond similarities and number of typifying taxa. Moreover, a β diversity partitioning procedure was used to obtain the relative contributions of the replacement and richness components to overall β diversity. Finally, the effects of water, pond and landscape variables on composition and taxa richness were analysed for each group. Different temporal patterns were observed among the biotic groups studied, and in some (but not all) cases these differences were explained by their dispersal ability. Similarly, we observed that environmental control was group specific. These results advance the notion that communities in Mediterranean temporary ponds are highly variable over time and that generalisations with regard to patterns and controls across taxonomic groups are not supported.

Additional keywords: amphibians, macroinvertebrates, microcrustaceans, phytoplankton, Sardinia, vascular plants.


References

Alahuhta, J., Kanninen, A., Hellsten, S., Vuori, K. M., Kuoppala, M., and Hämäläinen, H. (2014). Variable response of functional macrophyte groups to lake characteristics, land use, and space: implications for bioassessment. Hydrobiologia 737, 201–214.
Variable response of functional macrophyte groups to lake characteristics, land use, and space: implications for bioassessment.CrossRef | 1:CAS:528:DC%2BC3sXhslOrs7rO&md5=dd75526f5e98c9a0e9785aa63c204749CAS | open url image1

Alonso, M. (1996). ‘Crustacea, Branchiopoda.’ (Museo Nacional de Ciencias Naturales, CSIC: Madrid.)

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46. open url image1

Aponte, C., Kazakis, G., Ghosn, D., and Papanastasis, V. P. (2010). Characteristics of the soil seed bank in Mediterranean temporary ponds and its role in ecosystem dynamics. Wetlands Ecology and Management 18, 243–253.
Characteristics of the soil seed bank in Mediterranean temporary ponds and its role in ecosystem dynamics.CrossRef | open url image1

Audet, C., MacPhee, S., and Keller, W. (2013). Constructed ponds colonized by crustacean zooplankton: local and regional influences. Journal of Limnology 72, 524–530.
Constructed ponds colonized by crustacean zooplankton: local and regional influences.CrossRef | open url image1

Bagella, S., and Caria, M. C. (2012). Diversity and ecological characteristics of vascular flora in Mediterranean temporary pools. Comptes Rendus Biologies 335, 69–76.
Diversity and ecological characteristics of vascular flora in Mediterranean temporary pools.CrossRef | 22226165PubMed | open url image1

Bagella, S., Caria, M. C., Farris, E., and Filigheddu, R. (2007). Issues related to the classification of Mediterranean temporary wet habitats according with the European Union Habitats Directive. Fitosociologia 44, 245–249. open url image1

Bagella, S., Gascón, S., Caria, M. C., Sala, J., Mariani, M. A., and Boix, D. (2010a). Identifying key environmental factors related to plant and crustacean assemblages in Mediterranean temporary ponds. Biodiversity and Conservation 19, 1749–1768.
Identifying key environmental factors related to plant and crustacean assemblages in Mediterranean temporary ponds.CrossRef | open url image1

Bagella, S., Caria, M. C., and Zuccarello, V. (2010b). Patterns of emblematic habitat types in Mediterranean temporary wetlands. Comptes Rendus Biologies 333, 694–700.
Patterns of emblematic habitat types in Mediterranean temporary wetlands.CrossRef | 20816650PubMed | open url image1

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19, 134–143.
Partitioning the turnover and nestedness components of beta diversity.CrossRef | open url image1

Boda, P., and Csabai, Z. (2013). When do beetles and bugs fly? A unified scheme for describing seasonal flight behaviour of highly dispersing primary aquatic insects. Hydrobiologia 703, 133–147.
When do beetles and bugs fly? A unified scheme for describing seasonal flight behaviour of highly dispersing primary aquatic insects.CrossRef | open url image1

Bohonak, A. J., and Jenkins, D. G. (2003). Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6, 783–796.
Ecological and evolutionary significance of dispersal by freshwater invertebrates.CrossRef | open url image1

Bohonak, A. J., and Whiteman, H. H. (1999). Dispersal of the fairy shrimp Branchinecta coloradensis (Anostraca): effects of hydroperiod and salamanders. Limnology and Oceanography 44, 487–493.
Dispersal of the fairy shrimp Branchinecta coloradensis (Anostraca): effects of hydroperiod and salamanders.CrossRef | open url image1

Boix, D., Sala, J., Quintana, X. D., and Moreno-Amich, R. (2004). Succession of the animal community in a Mediterranean temporary pond. Journal of the North American Benthological Society 23, 29–49.
Succession of the animal community in a Mediterranean temporary pond.CrossRef | open url image1

Boix, D., Gascón, S., Sala, J., Badosa, A., Brucet, S., López-Flores, R., Martinoy, M., Gifre, J., and Quintana, X. D. (2008). Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597, 53–69.
Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies.CrossRef | open url image1

Boix, D., Magnusson, A. K., Gascón, S., Sala, J., and Williams, D. D. (2011). Environmental influence on flight activity and arrival patterns of aerial colonizers of temporary ponds. Wetlands 31, 1227–1240.
Environmental influence on flight activity and arrival patterns of aerial colonizers of temporary ponds.CrossRef | open url image1

Boix, D., Kneitel, J., Robson, B. J., Duchet, C., Zúñiga, L., Day, J., Gascón, S., Sala, J., Quintana, X. D., and Blaustein, L. (2016). Invertebrates of freshwater temporary ponds in Mediterranean climates. In ‘Invertebrates in Freshwater Wetlands’. (Eds D. Batzer and D. Boix.) pp. 141–189. (Springer: New York.)

Borcard, D., Legendre, P., and Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055.
Partialling out the spatial component of ecological variation.CrossRef | open url image1

Bornette, G., and Puijalon, S. (2011). Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73, 1–14.
Response of aquatic plants to abiotic factors: a review.CrossRef | 1:CAS:528:DC%2BC3MXht1Wms74%3D&md5=c9a8ddf5e92759ea5ddc6d6da7f9cc0dCAS | open url image1

Boronat, L., Miracle, M. R., and Armengol, X. (2001). Cladoceran assemblages in a mineralization gradient. Hydrobiologia 442, 75–88.
Cladoceran assemblages in a mineralization gradient.CrossRef | open url image1

Brock, M. A., Nielsen, D. L., Shiel, R. J., Green, J. D., and Langley, J. D. (2003). Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48, 1207–1218.
Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands.CrossRef | open url image1

Cáceres, C. E., and Soluk, D. A. (2002). Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131, 402–408.
Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates.CrossRef | open url image1

Cantarello, E., and Newton, A. C. (2008). Identifying cost-effective indicators to assess the conservation status of forested habitats in Natura 2000 sites. Forest Ecology and Management 256, 815–826.
Identifying cost-effective indicators to assess the conservation status of forested habitats in Natura 2000 sites.CrossRef | open url image1

Caramujo, M. J., and Boavida, M. J. (2010). Biological diversity of copepods and cladocerans in Mediterranean temporary ponds under periods of contrasting rainfall. Journal of Limnology 69, 64–75.
Biological diversity of copepods and cladocerans in Mediterranean temporary ponds under periods of contrasting rainfall.CrossRef | open url image1

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6: User Manual/Tutorial.’ (PRIMER-E: Plymouth.)

Clarke, K. R., and Warwick, R. M. (1994). An approach to statistical analysis and interpretation. In ‘Change in Marine Communities’, 2nd edn. pp. 1-1–17-18. (Plymouth Marine Laboratory: Plymouth, UK.)

Cottenie, K., and De Meester, L. (2003). Connectivity and cladoceran species richness in a metacommunity of shallow lakes. Freshwater Biology 48, 823–832.
Connectivity and cladoceran species richness in a metacommunity of shallow lakes.CrossRef | open url image1

De Bie, T., Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampe, H., Denys, L., Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W., and Declerck, S. A. J. (2012). Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15, 740–747.
Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms.CrossRef | 1:STN:280:DC%2BC38nivFKrtQ%3D%3D&md5=03d59da4d3750bb42a4a07efae0615fdCAS | 22583795PubMed | open url image1

De Meester, L., Gómez, A., Okamura, B., and Schwenk, K. (2002). The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23, 121–135.
The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms.CrossRef | open url image1

de Szalay, F. A., and Resh, V. H. (2000). Factors influencing macroinvertebrate colonization of seasonal wetlands: responses to emergent plant cover. Freshwater Biology 45, 295–308.
Factors influencing macroinvertebrate colonization of seasonal wetlands: responses to emergent plant cover.CrossRef | open url image1

Deil, U. (2005). A review on habitats, plant traits and vegetation of ephemeral wetlands: a global perspective. Phytocoenologia 35, 533–706.
A review on habitats, plant traits and vegetation of ephemeral wetlands: a global perspective.CrossRef | open url image1

Della Bella, V., Bazzanti, M., and Chiarotti, F. (2005). Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15, 583–600.
Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence.CrossRef | open url image1

Dethier, M. N., Graham, E. S., Cohen, S., and Tear, L. M. (1993). Visual versus random-point percent cover estimations: objective is not always better. Marine Ecology Progress Series 96, 93–100.
Visual versus random-point percent cover estimations: objective is not always better.CrossRef | open url image1

Dolos, K., and Rudner, M. (2011). Seasonal variability and phenology of dwarf rush communities in southern Spain. Ecologia Mediterranea 37, 69–82. open url image1

Dussart, B. (1967). ‘Les Copépodes des eaux Continentals’, Volume 1. (N. Boubée and Cie: Paris.)

Dussart, B. (1969). ‘Les Copépodes des eaux Continentals’, Volume 2. (N. Boubée and Cie: Paris.)

Escrivà, A., Armengol, X., and Mezquita, F. (2010). Microcrustacean and rotiferan communities of two close Mediterranean mountain ponds, lagunas de Bezas and Rubiales (Spain). Journal of Freshwater Ecology 25, 427–435.
Microcrustacean and rotiferan communities of two close Mediterranean mountain ponds, lagunas de Bezas and Rubiales (Spain).CrossRef | open url image1

Eyre, M. D., Ball, S. G., and Foster, G. N. (1986). An initial classification of the habitats of aquatic Coleoptera in north-east England. Journal of Applied Ecology 23, 841–852.
An initial classification of the habitats of aquatic Coleoptera in north-east England.CrossRef | open url image1

Fernandes, I. M., Henriques-Silva, R., Penha, J., Zuanon, J., and Peres-Neto, P. R. (2014). Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37, 464–475. open url image1

Florencio, M., Díaz-Paniagua, C., Serrano, L., and Bilton, D. T. (2011). Spatio-temporal nested patterns in macroinvertebrate assemblages across a pond network with a wide hydroperiod range. Oecologia 166, 469–483.
Spatio-temporal nested patterns in macroinvertebrate assemblages across a pond network with a wide hydroperiod range.CrossRef | 21120669PubMed | open url image1

Franciscolo, M. E. (1979). ‘Coleoptera. Haliplidae, Hygrobiidae, Gyrinidae, Dytiscidae. Fauna d’Italia.’ (Edizioni Calderini: Bologna.)

Fresenius, W. K. E., Quentin, W. W., and Scheneider, W. (1988). ‘Water Analysis. A Practical Guide to Physico-chemical and Microbiological Water Examination and Quality Assurance.’ (Springer: Berlin.)

Friday, L. E. (1987). The diversity of macroinvertebrate and macrophyte communities in ponds. Freshwater Biology 18, 87–104.
The diversity of macroinvertebrate and macrophyte communities in ponds.CrossRef | open url image1

Frisch, D., Cottenie, K., Badosa, A., and Green, A. J. (2012). Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS One 7, e40205.
Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity.CrossRef | 1:CAS:528:DC%2BC38XhtVCitb7K&md5=a6437eb35fa3c3a12feb572340566b51CAS | 22792241PubMed | open url image1

Gascón, S., Machado, M., Sala, J., Cancela da Fonseca, L., Cristo, M., and Boix, D. (2012). Spatial characteristics and species niche attributes modulate the response by aquatic passive dispersers to habitat degradation. Marine and Freshwater Research 63, 232–245.
Spatial characteristics and species niche attributes modulate the response by aquatic passive dispersers to habitat degradation.CrossRef | open url image1

Golterman, H. L., Clymo, R. S., and Ohnstad, M. A. M. (1978). ‘Methods for Physical and Chemical Analysis of Freshwaters’. (Blackwell: Oxford, UK.)

Heino, J. (2013). Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171, 971–980.
Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities?CrossRef | 22961400PubMed | open url image1

Holyoak, M., Leibold, M. A., and Holt, R. D. (2005). ‘Metacommunities: Spatial Dynamics and Ecological Communities’. (University of Chicago Press: Chicago, IL, USA.)

Incagnone, G., Marrone, F., Barone, R., Robba, L., and Naselli-Flores, L. (2015). How do freshwater organisms cross the ‘dry ocean’? A review on passive dispersal and colonization processes with a special focus on temporary ponds. Hydrobiologia 750, 103–123.
How do freshwater organisms cross the ‘dry ocean’? A review on passive dispersal and colonization processes with a special focus on temporary ponds.CrossRef | open url image1

Jeffries, M. (1998). Pond macrophyte assemblages, biodisparity and spatial distribution of ponds in the Northumberland coastal plain, UK. Aquatic Conservation: Marine and Freshwater Ecosystems 8, 657–667.
Pond macrophyte assemblages, biodisparity and spatial distribution of ponds in the Northumberland coastal plain, UK.CrossRef | open url image1

Jeffries, M. (2005). Local-scale turnover of pond insects: intrapond habitat quality and inter-pond geometry are both important. Hydrobiologia 543, 207–220.
Local-scale turnover of pond insects: intrapond habitat quality and inter-pond geometry are both important.CrossRef | open url image1

Jenkins, D. G., and Buikema, A. L. (1998). Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecological Monographs 68, 421–443.
Do similar communities develop in similar sites? A test with zooplankton structure and function.CrossRef | open url image1

Kallimanis, A. S., Mazaris, A. D., Tsakanikas, D., Dimopoulos, P., Pantis, J. D., and Sgardelis, S. P. (2012). Efficient biodiversity monitoring: which taxonomic level to study? Ecological Indicators 15, 100–104.
Efficient biodiversity monitoring: which taxonomic level to study?CrossRef | open url image1

King, J. L., Simovich, M. A., and Brusca, R. C. (1996). Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328, 85–116.
Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools.CrossRef | open url image1

Komárek, J., and Komárková, J. (2002). Review of the European Microcystis-morphospecies (Cyanoprokariotes) from nature. Czech Phycology 2, 1–24. open url image1

Komárek, J., and Zapomělová, E. (2007). Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum – 1. Part: coiled types. Fottea 7, 1–31.
Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum – 1. Part: coiled types.CrossRef | open url image1

Komárek, J., and Zapomělová, E. (2008). Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum – 2. Part: straight types. Fottea 8, 1–14.
Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum – 2. Part: straight types.CrossRef | open url image1

Lake, P. S., Bayly, I. A. E., and Morton, D. W. (1989). The phenology of a temporary pond in western Victoria, Australia, with special reference to invertebrate succession. Archiv für Hydrobiologie 115, 171–202. open url image1

Lauridsen, T. L., Jeppesen, E., Declerck, S. A. J., De Meester, L., Conde-Porcuna, J. M., Rommens, W., and Brucet, S. (2015). The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: differences between northern and southern Europe. Hydrobiologia 744, 49–61.
The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: differences between northern and southern Europe.CrossRef | 1:CAS:528:DC%2BC2cXhs1Ohsb3M&md5=a110994bdd83ad2646a1de2978450f6aCAS | open url image1

Legendre, P. (2014). Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23, 1324–1334.
Interpreting the replacement and richness difference components of beta diversity.CrossRef | open url image1

Louette, G., and De Meester, L. (2006). Establishment success in young cladoceran communities: an experimental test. Limnology and Oceanography 51, 1021–1030.
Establishment success in young cladoceran communities: an experimental test.CrossRef | open url image1

Marchetto, A., Padedda, B. M., Mariani, M. A., Lugliè, A., and Sechi, N. (2009). A numerical index to evaluate the phytoplankton response to changes in nutrient levels in deep Mediterranean reservoirs. Journal of Limnology 68, 106–121.
A numerical index to evaluate the phytoplankton response to changes in nutrient levels in deep Mediterranean reservoirs.CrossRef | open url image1

Marrone, F., Lo Brutto, S., Hundsdoerfer, A., and Arculeo, M. (2013). Overlooked cryptic endemism in copepods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoida, Diaptomidae). Molecular Phylogenetics and Evolution 66, 190–202.
Overlooked cryptic endemism in copepods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoida, Diaptomidae).CrossRef | 23026809PubMed | open url image1

Marty, J. T. (2005). Effects of cattle grazing on diversity in ephemeral wetlands. Conservation Biology 19, 1626–1632.
Effects of cattle grazing on diversity in ephemeral wetlands.CrossRef | open url image1

McArdle, B. H., and Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297.
Fitting multivariate models to community data: a comment on distance-based redundancy analysis.CrossRef | open url image1

Meisch, C. (2000). ‘Freshwater Ostracoda of Western and Central Europe.’ (Spektrum Akademischer Verlag GmbH: Berlin.)

Miguel-Chinchilla, L., Boix, D., Gascón, S., and Comín, F. A. (2014). Taxonomic and functional successional patterns in macroinvertebrates related to flying dispersal abilities: a case study from isolated manmade ponds at reclaimed opencast coal mines. Hydrobiologia 732, 111–122.
Taxonomic and functional successional patterns in macroinvertebrates related to flying dispersal abilities: a case study from isolated manmade ponds at reclaimed opencast coal mines.CrossRef | 1:CAS:528:DC%2BC2cXltVSkur4%3D&md5=a28847fd13477d883dfe2354ada0e244CAS | open url image1

Moreno-Mateos, D., Power, M. E., Comín, F. A., and Yockteng, R. (2012). Structural and functional loss in restored wetland ecosystems. PLoS Biology 10, e1001247.
Structural and functional loss in restored wetland ecosystems.CrossRef | 1:CAS:528:DC%2BC38XitFykur4%3D&md5=5bdc2e5bfd04ea82b03bbc2f192ef00fCAS | 22291572PubMed | open url image1

Naselli-Flores, L., and Barone, R. (2012). Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698, 147–159.
Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance?CrossRef | 1:CAS:528:DC%2BC38XhsVagtb3E&md5=9c8cf4e1dab200876b0f2f29802213b5CAS | open url image1

Nicholls, S. (2004). The priority environmental concerns of Papua New Guinea. International Waters Project, Pacific Technical Report 1. SPREP’s International Waters Project that is implementing the Strategic Action Programme for the International Waters of the Pacific Small Island Developing States with funding from the Global Environment Facility

O’Malley, M. A. (2007). The nineteenth century roots of ‘everything is everywhere’. Nature Reviews. Microbiology 5, 647–651.
The nineteenth century roots of ‘everything is everywhere’.CrossRef | 1:CAS:528:DC%2BD2sXns12huro%3D&md5=8844abd3b78f992e03f648fd6c098911CAS | 17603517PubMed | open url image1

Oertli, B., Joye, D. A., Castella, E., Juge, R., Cambin, D., and Lachavanne, J. B. (2002). Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104, 59–70.
Does size matter? The relationship between pond area and biodiversity.CrossRef | open url image1

Oertli, B., Biggs, J., Céréghino, R., Grillas, P., Joly, P., and Lachavanne, J. B. (2005). Conservation and monitoring of pond biodiversity: introduction. Aquatic Conservation: Marine and Freshwater Ecosystems 15, 535–540.
Conservation and monitoring of pond biodiversity: introduction.CrossRef | open url image1

Olmo, C., Armengol, X., and Ortells, R. (2012). Re-establishment of zooplankton communities in temporary ponds after autumn flooding: does restoration age matter? Limnologica 42, 310–319.
Re-establishment of zooplankton communities in temporary ponds after autumn flooding: does restoration age matter?CrossRef | open url image1

Pandit, S. N., Kolasa, J., and Cottenie, K. (2009). Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262.
Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework.CrossRef | 19739387PubMed | open url image1

Paradis, G., Lorenzoni-Pietri, C., and Pozzo di Borgo, M. L. (2009). La végétation des mares temporaires méditerranéennes de la Corse. Bulletin de la Société des Sciences historiques et naturelles de la Corse 728–729, 19–61. open url image1

Parekh, P. A., Paetkau, M. J., and Gosselin, L. A. (2014). Historical frequency of wind dispersal events and role of topography in the dispersal of anostracan cysts in a semi-arid environament. Hydrobiologia 740, 51–59.
Historical frequency of wind dispersal events and role of topography in the dispersal of anostracan cysts in a semi-arid environament.CrossRef | open url image1

Patrick, C. J., Cooper, M. J., and Uzarski, D. G. (2014). Dispersal mode and ability affect the spatial turnover of a wetland macroinvertebrate community. Wetlands 34, 1133–1143.
Dispersal mode and ability affect the spatial turnover of a wetland macroinvertebrate community.CrossRef | open url image1

Pätzig, M., Kalettka, T., Glemnitz, M., and Berger, G. (2012). What governs macrophyte species richness in kettle hole types? A case study from northeast Germany. Limnologica 42, 340–354.
What governs macrophyte species richness in kettle hole types? A case study from northeast Germany.CrossRef | open url image1

Peres-Neto, P. R., Legendre, P., Dray, S., and Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625.
Variation partitioning of species data matrices: estimation and comparison of fractions.CrossRef | 17089669PubMed | open url image1

Pinto-Cruz, C., Molina, J. A., Barbour, M., Silva, V., and Espírito-Santo, M. D. (2009). Plant communities as a tool in temporary ponds conservation in SW Portugal. Hydrobiologia 634, 11–24.
Plant communities as a tool in temporary ponds conservation in SW Portugal.CrossRef | open url image1

Polasky, S., Camm, J. D., and Garber-Yonts, B. (2001). Selecting biological reserves cost-effectively: an application to terrestrial vertebrate conservation in Oregon. Land Economics 77, 68–78.
Selecting biological reserves cost-effectively: an application to terrestrial vertebrate conservation in Oregon.CrossRef | open url image1

Rasmussen, C., Dupont, Y. L., Mosbacher, J. B., Trøjelsgaard, K., and Olesen, J. M. (2013). Strong impact of temporal resolution on the structure of an ecological network. PLoS One 8, e81694.
Strong impact of temporal resolution on the structure of an ecological network.CrossRef | 24324718PubMed | open url image1

Rhazi, L., Grillas, P., Rhazi, M., and Aznar, J. C. (2009). Ten-year dynamics of vegetation in a Mediterranean temporary pool in western Morocco. Hydrobiologia 634, 185–194.
Ten-year dynamics of vegetation in a Mediterranean temporary pool in western Morocco.CrossRef | open url image1

Rivas-Martínez, S., Díaz, T. E., Fernando-González, F., Izco, J., Loidi, J., Lousa, M., and Penas, Á. (2002). Vascular plant communities of Spain and Portugal. Itinera Geobotanica 15, 5–922. open url image1

Rouissi, M., Boix, D., Muller, S. D., Gascón, S., Ruhí, A., Sala, J., Bouattour, A., Ben Haj Jilani, I., Ghrabi-Gammar, Z., Ben Saad-Limam, S., and Daoud-Bouattour, A. (2014). Spatio-temporal variability of faunal and floral assemblages in Mediterranean temporary wetlands. Comptes Rendus Biologies 337, 695–708.
Spatio-temporal variability of faunal and floral assemblages in Mediterranean temporary wetlands.CrossRef | 25433562PubMed | open url image1

Ruhí, A., and Batzer, D. P. (2014). Assessing congruence and surrogacy among wetland macroinvertebrate taxa towards efficiently measuring biodiversity. Wetlands 34, 1061–1071.
Assessing congruence and surrogacy among wetland macroinvertebrate taxa towards efficiently measuring biodiversity.CrossRef | open url image1

Ruhí, A., Boix, D., Sala, J., Gascón, S., and Quintana, X. D. (2009). Spatial and temporal patterns of pioner macrofauna in recently created ponds: taxonomic and functional approaches. Hydrobiologia 634, 137–151.
Spatial and temporal patterns of pioner macrofauna in recently created ponds: taxonomic and functional approaches.CrossRef | open url image1

Ruhí, A., Herrmann, J., Gascón, S., Sala, J., Geijer, J., and Boix, D. (2012). Change in biological traits and community structure of macroinvertebrates through primary succession in a man-made Swedish wetland. Freshwater Science 31, 22–37.
Change in biological traits and community structure of macroinvertebrates through primary succession in a man-made Swedish wetland.CrossRef | open url image1

Ruhí, A., Boix, D., Gascón, S., Sala, J., and Quintana, X. D. (2013a). Nestedness and successional trajectories of macroinvertebrate assemblages in man-made wetlands. Oecologia 171, 545–556.
Nestedness and successional trajectories of macroinvertebrate assemblages in man-made wetlands.CrossRef | 22965268PubMed | open url image1

Ruhí, A., Boix, D., Gascón, S., Sala, J., and Batzer, D. P. (2013b). Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios. PLoS One 8, e81739.
Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios.CrossRef | 24312347PubMed | open url image1

Ruhí, A., Chappuis, E., Escoriza, D., Jover, M., Sala, J., Boix, D., Gascón, S., and Gacia, E. (2014). Environmental filtering determines community patterns in temporary wetlands: a multi-taxon approach. Hydrobiologia 723, 25–39.
Environmental filtering determines community patterns in temporary wetlands: a multi-taxon approach.CrossRef | open url image1

Salmaso, N., Naselli-Flores, L., and Padisák, J. (2012). Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton? Hydrobiologia 698, 375–384.
Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton?CrossRef | open url image1

Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., and Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8, 275–279.
Alternative equilibria in shallow lakes.CrossRef | 1:STN:280:DC%2BC3M7itVyqtQ%3D%3D&md5=1c1264734f9340956062c8970b332346CAS | open url image1

Schneider, D. W., and Frost, T. M. (1996). Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15, 64–86.
Habitat duration and community structure in temporary ponds.CrossRef | open url image1

Shurin, J. B., Cottenie, K., and Hillebrand, H. (2009). Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159, 151–159.
Spatial autocorrelation and dispersal limitation in freshwater organisms.CrossRef | 18941791PubMed | open url image1

Sim, L. L., Davis, J. A., Strehlow, K., McGuire, M., Trayler, K. M., Wild, S., Papas, P. J., and O’Connor, J. (2013). The influence of changing hydroregime on the invertebrate communities of temporary seasonal wetlands. Freshwater Science 32, 327–342.
The influence of changing hydroregime on the invertebrate communities of temporary seasonal wetlands.CrossRef | open url image1

Smith, G. R., Vaala, D. A., and Dingfelder, H. A. (2003). Distribution and abundance of macroinvertebrates within two temporary ponds. Hydrobiologia 497, 161–167.
Distribution and abundance of macroinvertebrates within two temporary ponds.CrossRef | open url image1

Soininen, J., and Meier, S. (2014). Phytoplankton richness is related to nutrient availability, not to pool size, in a subarctic rock pool system. Hydrobiologia 740, 137–145.
Phytoplankton richness is related to nutrient availability, not to pool size, in a subarctic rock pool system.CrossRef | 1:CAS:528:DC%2BC2cXht1SqtLvP&md5=9d0ae5d2c5f8f6f3c0f4721650dc3041CAS | open url image1

Strikland, J. D. H., and Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Bulletin 167 of the Fisheries Research Board of Canada, Ottawa, ON. Available at https://epic.awi.de/39262/1/Strickland-Parsons_1972.pdf [Verified 18 June 2016].

Suda, S., Watanabe, M. M., Otsuka, S., Mahakahant, A., Yongmanitchai, W., Nopartnaraporn, N., Liu, Y. D., and Day, J. G. (2002). Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. International Journal of Systematic and Evolutionary Microbiology 52, 1577–1595.
| 1:CAS:528:DC%2BD38XnvFyiurY%3D&md5=0f573175ef43cc8ea8cbe4616f9ada67CAS | 12361260PubMed | open url image1

Tavares-Cromar, A. F., and Williams, D. D. (1996). The importance of temporal resolution in food web analysis: evidence from a detritus-based stream. Ecological Monographs 66, 91–113.
The importance of temporal resolution in food web analysis: evidence from a detritus-based stream.CrossRef | open url image1

Teissier, S., Peretyatko, A., De Backer, S., and Triest, L. (2012). Strength of phytoplankton–nutrient relationship: evidence from 13 biomanipulated ponds. Hydrobiologia 689, 147–159.
Strength of phytoplankton–nutrient relationship: evidence from 13 biomanipulated ponds.CrossRef | 1:CAS:528:DC%2BC38XmsVahsb8%3D&md5=e0a75c289e9a05927f775a9bc3247265CAS | open url image1

Tischendorf, L., Bender, D. J., and Fahrig, L. (2003). Evaluation of patch isolation metrics in mosaic landscapes for specialist v. generalist dispersers. Landscape Ecology 18, 41–50.
Evaluation of patch isolation metrics in mosaic landscapes for specialist v. generalist dispersers.CrossRef | open url image1

Utermöhl, H. (1958). Zur vervollkhung der quantitativen phytoplanktonmethodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1–38. open url image1

Vanschoenwinkel, B., Gielen, S., Seaman, M., and Brendonck, L. (2009). Wind mediated dispersal of freshwater invertebrates in a rock pool metacommunity: differences in dispersal capacities and modes. Hydrobiologia 635, 363–372.
Wind mediated dispersal of freshwater invertebrates in a rock pool metacommunity: differences in dispersal capacities and modes.CrossRef | open url image1

Velasco, J., and Millán, A. (1998). Insect dispersal in a drying desert stream: effects of temperature and water loss. The Southwestern Naturalist 43, 80–87. open url image1

Wellborn, G. A., Skelly, D. K., and Werner, E. E. (1996). Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27, 337–363.
Mechanisms creating community structure across a freshwater habitat gradient.CrossRef | open url image1

Wiggins, G. B., Mackay, R. J., and Smith, I. M. (1980). Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie 58, 97–206. open url image1

Wilcox, C. (2001). Habitat size and isolation affect colonization of seasonal wetlands by predatory aquatic insects. Israel Journal of Zoology 47, 459–475.
Habitat size and isolation affect colonization of seasonal wetlands by predatory aquatic insects.CrossRef | open url image1

Williams, D. D., Heeg, N., and Magnusson, A. K. (2007). Habitat background selection by colonizing intermittent pond invertebrates. Hydrobiologia 592, 487–498.
Habitat background selection by colonizing intermittent pond invertebrates.CrossRef | open url image1

Wohlfahrt, B., and Vamosi, S. M. (2012). Predation and habitat isolation influence the community composition–area relationship in dytiscid beetles (Coleoptera: Dytiscidae). Community Ecology 13, 1–10.
Predation and habitat isolation influence the community composition–area relationship in dytiscid beetles (Coleoptera: Dytiscidae).CrossRef | open url image1



Export Citation Cited By (1)