Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Ecological singularity of temperate mesopredatory myliobatoid rays (Chondrichthyes: Myliobatiformes)

Natalia L. Ruocco A C and Luis O. Lucifora B
+ Author Affiliations
- Author Affiliations

A Instituto Nacional de Investigación y Desarrollo Pesquero, Paseo Victoria Ocampo s/n, Mar del Plata, B7602HSA, Provincia de Buenos Aires, Argentina.

B Instituto de Biología Subtropical – Iguazú, Universidad Nacional de Misiones, Consejo Nacional de Investigaciones Científicas y Técnicas, Casilla de Correo 9, Puerto Iguazú, N3370AVQ, Misiones, Argentina.

C Corresponding author. Email: nruocco@inidep.edu.ar

Marine and Freshwater Research 68(6) 1098-1111 https://doi.org/10.1071/MF15469
Submitted: 23 December 2015  Accepted: 10 June 2016   Published: 17 August 2016

Abstract

Many myliobatoid rays are important mesopredators, having significant effects on coastal benthic communities. In tropical and subtropical high-diversity oligotrophic ecosystems, they partition their trophic resources, which results in high ecological singularity. However, it is unknown whether this is true for temperate low-diversity eutrophic ecosystems. In the present study, we tested, for the first time, the hypothesis that myliobatoid mesopredators are ecologically redundant in a temperate low-diversity eutrophic ecosystem. We quantified diet and measured intra- and interspecific trophic overlap in the three species that regularly occur off Uruguay and northern Argentina, namely Myliobatis goodei, Myliobatis ridens and Dasyatis hypostigma. M. ridens had a typical durophagic diet composed of bivalves and gastropods, M. goodei fed primarily on polychaetes and decapods, diverging from the durophagic diet typical of its genus, and D. hypostigma preyed primarily on amphipods and decapods. There were ontogenetic and seasonal dietary differences in all three species. It is concluded that ecological singularity is present in this temperate myliobatoid assemblage, with each species having a different trophic niche. The practice of pooling together myliobatoid mesopredators in trophic models must be abandoned unless there is evidence of ecological redundancy.

Additional keywords: Dasyatidae, durophagy, ecological redundancy, Myliobatidae, niche partitioning, trophic ecology.


References

Acha, E. M., Mianzan, H. W., Guerrero, R. A., Favero, M., and Bava, J. (2004). Marine fronts at the continental shelves of austral South America: physical and ecological processes. Journal of Marine Systems 44, 83–105.
Marine fronts at the continental shelves of austral South America: physical and ecological processes.CrossRef | open url image1

Ajemian, M. J., and Powers, S. P. (2012). Habitat-specific feeding by cownose rays (Rhinoptera bonasus) of the northern Gulf of Mexico. Environmental Biology of Fishes 95, 79–97.
Habitat-specific feeding by cownose rays (Rhinoptera bonasus) of the northern Gulf of Mexico.CrossRef | open url image1

Ajemian, M. J., and Powers, S. P. (2013). Foraging effects of cownose rays (Rhinoptera bonasus) along barrier islands of the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 439, 119–128.
Foraging effects of cownose rays (Rhinoptera bonasus) along barrier islands of the northern Gulf of Mexico.CrossRef | open url image1

Ajemian, M. J., Powers, S. P., and Murdoch, T. J. T. (2012). Estimating the potential impacts of large mesopredators on benthic resources: integrative assessment of spotted eagle ray foraging ecology in Bermuda. PLoS One 7, e40227.
Estimating the potential impacts of large mesopredators on benthic resources: integrative assessment of spotted eagle ray foraging ecology in Bermuda.CrossRef | 1:CAS:528:DC%2BC38XhtVWgsLvJ&md5=4889f5fffd23574570a6c75e52e3d660CAS | 22802956PubMed | open url image1

Arreguín-Sánchez, F., Arcos, E., and Chávez, E. A. (2002). Flows of biomass and structure in an exploited benthic ecosystem in the Gulf of California, Mexico. Ecological Modelling 156, 167–183.
Flows of biomass and structure in an exploited benthic ecosystem in the Gulf of California, Mexico.CrossRef | open url image1

Barausse, A., Duci, A., Mazzoldi, C., Artioli, Y., and Palmeri, L. (2009). Trophic network model of the northern Adriatic Sea: analysis of an exploited and eutrophic ecosystem. Estuarine, Coastal and Shelf Science 83, 577–590.
Trophic network model of the northern Adriatic Sea: analysis of an exploited and eutrophic ecosystem.CrossRef | open url image1

Barbini, S. A., and Lucifora, L. O. (2011). Feeding habits of the Rio skate, Rioraja agassizi (Chondrichthyes: Rajidae), from off Uruguay and northern Argentina. Journal of the Marine Biological Association of the United Kingdom 91, 1175–1184.
Feeding habits of the Rio skate, Rioraja agassizi (Chondrichthyes: Rajidae), from off Uruguay and northern Argentina.CrossRef | open url image1

Barbini, S. A., and Lucifora, L. O. (2012a). Feeding habits of a large endangered skate from the south-west Atlantic: the spotback skate Atlantoraja castelnaui. Marine and Freshwater Research 63, 180–188.
Feeding habits of a large endangered skate from the south-west Atlantic: the spotback skate Atlantoraja castelnaui.CrossRef | open url image1

Barbini, S. A., and Lucifora, L. O. (2012b). Ontogenetic diet shifts and food partitioning between two small sympatric skates (Chondrichthyes, Rajidae) in the Southwestern Atlantic. Marine and Freshwater Research 63, 905–915.
Ontogenetic diet shifts and food partitioning between two small sympatric skates (Chondrichthyes, Rajidae) in the Southwestern Atlantic.CrossRef | open url image1

Barbini, S. A., and Lucifora, L. O. (2016). Big fish (and a smallish skate) eat small fish: diet variation and trophic level of Sympterygia acuta, a medium-sized skate high in the food web. Marine Ecology 37, 283–293.
Big fish (and a smallish skate) eat small fish: diet variation and trophic level of Sympterygia acuta, a medium-sized skate high in the food web.CrossRef | open url image1

Barbini, S. A., Scenna, L. B., Figueroa, D. E., and Díaz de Astarloa, J. M. (2013). Effects of intrinsic and extrinsic factors on the diet of Bathyraja macloviana, a benthophagous skate. Journal of Fish Biology 83, 156–169.
Effects of intrinsic and extrinsic factors on the diet of Bathyraja macloviana, a benthophagous skate.CrossRef | 1:STN:280:DC%2BC3sjmsVajsA%3D%3D&md5=83e669bfdb861dfd55b607b901c0b910CAS | 23808698PubMed | open url image1

Barbini, S. A., Lucifora, L. O., and Figueroa, D. E. (2015). Using opportunistic records from a recreational fishing magazine to assess population trends of sharks. Canadian Journal of Fisheries and Aquatic Sciences 72, 1853–1859.
Using opportunistic records from a recreational fishing magazine to assess population trends of sharks.CrossRef | open url image1

Belleggia, M., Mabragaña, E., Figueroa, D. E., Scenna, L. B., Barbini, S. A., and Díaz de Astarloa, J. M. (2008). Food habits of the broad nose skate, Bathyraja brachyurops (Chondrichthyes, Rajidae), in the south-west Atlantic. Scientia Marina 72, 701–710.
Food habits of the broad nose skate, Bathyraja brachyurops (Chondrichthyes, Rajidae), in the south-west Atlantic.CrossRef | open url image1

Bornatowski, H., Wosnick, N., Do Carmo, W. P. D., Corrêa, M. F. M., and Abilhoa, V. (2014). Feeding comparisons of four batoids (Elasmobranchii) in coastal waters of southern Brazil. Journal of the Marine Biological Association of the United Kingdom 94, 1491–1499.
Feeding comparisons of four batoids (Elasmobranchii) in coastal waters of southern Brazil.CrossRef | open url image1

Bortolus, A. (2008). Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37, 114–118.
Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology.CrossRef | 18488554PubMed | open url image1

Braccini, J. M., Gillanders, B. M., and Walker, T. I. (2005). Sources of variation in the feeding ecology of the piked spurdog (Squalus megalops): implications for inferring predator–prey interactions from overall dietary composition. ICES Journal of Marine Science 62, 1076–1094. open url image1

Bustamante, C., Vargas-Caro, C., and Bennett, M. B. (2014). Not all fish are equal: functional biodiversity of cartilaginous fishes (Elasmobranchii and Holocephali) in Chile. Journal of Fish Biology 85, 1617–1633.
Not all fish are equal: functional biodiversity of cartilaginous fishes (Elasmobranchii and Holocephali) in Chile.CrossRef | 1:STN:280:DC%2BC2M7ltF2ntA%3D%3D&md5=294b2d2a675c55f7145ef93d7037a964CAS | 25263288PubMed | open url image1

Collins, A. B., Heupel, M. R., Hueter, R. E., and Motta, P. J. (2007). Hard prey specialists or opportunistic generalists? An examination of the diet of the cownose ray, Rhinoptera bonasus. Marine and Freshwater Research 58, 135–144.
Hard prey specialists or opportunistic generalists? An examination of the diet of the cownose ray, Rhinoptera bonasus.CrossRef | open url image1

Compagno, L. J. V. (1990). Alternative life-history styles of cartilaginous fishes in time and space. Environmental Biology of Fishes 28, 33–75.
Alternative life-history styles of cartilaginous fishes in time and space.CrossRef | open url image1

Compagno, L. J. V., Ebert, D. A., and Smale, M. J. (1989). ‘Guide to the Sharks and Rays of Southern Africa.’ (Struik: Cape Town, South Africa.)

Cortés, E. (1997). A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 726–738.
A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes.CrossRef | open url image1

Cousseau, M. B., Figueroa, D. E., Díaz de Astarloa, J. M., Mabragaña, E., and Lucifora, L. O. (2007). ‘Rayas, Chuchos y Otros Batoideos del Atlántico Sudoccidental (34°S–55°S).’ (Instituto Nacional de Investigación y Desarrollo Pesquero: Mar del Plata.)

Dale, J. J., Wallsgrove, N. J., Popp, B. N., and Holland, K. N. (2011). Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes. Marine Ecology Progress Series 433, 221–236.
Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes.CrossRef | open url image1

Ebert, D. A., and Bizzarro, J. J. (2007). Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rajoidei). Environmental Biology of Fishes 80, 221–237.
Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rajoidei).CrossRef | open url image1

Ebert, D. A., and Cowley, P. D. (2003). Diet, feeding behaviour and habitat utilisation of the bluestingray Dasyatis chrysonota (Smith, 1828) in South African waters. Marine and Freshwater Research 54, 957–965.
Diet, feeding behaviour and habitat utilisation of the bluestingray Dasyatis chrysonota (Smith, 1828) in South African waters.CrossRef | open url image1

Ebert, D. A., and Stehmann, M. F. W. (2013). Sharks, batoids and chimaeras of the North Atlantic. FAO Species Catalogue for Fishery Purposes, number 7, Food and Agriculture Organization of the United Nations, Rome, Italy.

Ferry, L. A., and Cailliet, G. M. (1996). Sample size and data analysis: are we characterizing and comparing diet properly? In ‘Feeding Ecology and Nutrition in Fish. Symposium Proceedings of the International Congress on the Biology of Fishes’, 14–18 Jul 1996, San Francisco, CA, USA. (Eds D. MacKinlay and K. Shearer.) pp. 71–80. (American Fisheries Society: San Francisco, CA, USA.)

Flores-Ortega, J. R., Godínez-Domínguez, E., González-Sansón, G., Rojo-Vázquez, J. A., Corgos, A., and Morales-Jáuregui, M. Y. (2011). Feeding habits of three round stingrays (Rajiformes: Urotrygonidae) in the central Mexican Pacific. Ciencias Marinas 37, 279–292.
Feeding habits of three round stingrays (Rajiformes: Urotrygonidae) in the central Mexican Pacific.CrossRef | open url image1

Frank, K. T., Petrie, B., and Shackell, N. L. (2007). The ups and downs of trophic control in continental shelf ecosystems. Trends in Ecology & Evolution 22, 236–242.
The ups and downs of trophic control in continental shelf ecosystems.CrossRef | open url image1

Franklin, A. B., Shenk, T. M., Anderson, D. R., and Burnham, K. P. (2001). Statistical model selection: an alternative to null hypothesis testing. In ‘Modeling in Natural Resource Management: Development, Interpretation, and Application’. (Eds T. M. Shenk and A. B. Franklin.) pp. 75–90. (Island Press: Washington, DC.)

Gasalla, M. A., and Rossi-Wongtschowski, C. L. D. B. (2004). Contribution of ecosystem analysis to investigating the effects of changes in fishing strategies in the South Brazil Bight coastal ecosystem. Ecological Modelling 172, 283–306.
Contribution of ecosystem analysis to investigating the effects of changes in fishing strategies in the South Brazil Bight coastal ecosystem.CrossRef | open url image1

Gray, A. E., Mulligan, T. J., and Hannah, R. W. (1997). Food habits, occurrence, and population structure of the bat ray, Myliobatis californica, in Humboldt Bay, California. Environmental Biology of Fishes 49, 227–238.
Food habits, occurrence, and population structure of the bat ray, Myliobatis californica, in Humboldt Bay, California.CrossRef | open url image1

Hyslop, E. J. (1980). Stomach contents analysis: a review of methods and their application. Journal of Fish Biology 17, 411–429.
Stomach contents analysis: a review of methods and their application.CrossRef | open url image1

Jacobsen, I. P., and Bennett, M. B. (2012). Feeding ecology and dietary comparisons among three sympatric Neotrygon (Myliobatoidei: Dasyatidae) species. Journal of Fish Biology 80, 1580–1594.
Feeding ecology and dietary comparisons among three sympatric Neotrygon (Myliobatoidei: Dasyatidae) species.CrossRef | 1:STN:280:DC%2BC38rksVOqtg%3D%3D&md5=480d4d5dfd138e272a07ce8759664076CAS | 22497398PubMed | open url image1

Jacobsen, I. P., and Bennett, M. B. (2013). A comparative analysis of feeding and trophic level ecology in stingrays (Rajiformes; Myliobatoidei) and electric rays (Rajiformes: Torpedinoidei). PLoS One 8, e71348.
A comparative analysis of feeding and trophic level ecology in stingrays (Rajiformes; Myliobatoidei) and electric rays (Rajiformes: Torpedinoidei).CrossRef | 1:CAS:528:DC%2BC3sXht12mt77I&md5=d40a33c96d4246945f7ddd04e989042eCAS | 23936503PubMed | open url image1

Jacobsen, I. P., Johnson, J. W., and Bennett, M. B. (2009). Diet and reproduction in the Australian butterfly ray Gymnura australis from northern and north-eastern Australia. Journal of Fish Biology 75, 2475–2489.
Diet and reproduction in the Australian butterfly ray Gymnura australis from northern and north-eastern Australia.CrossRef | 1:STN:280:DC%2BC3cjnsVyjsw%3D%3D&md5=4a0f22a4f06ad4a4424809fe8e64cb85CAS | 20738503PubMed | open url image1

Jardas, I., Šantić, M., and Pallaoro, A. (2004). Diet composition of the eagle ray, Myliobatis aquila (Chondrichthyes: Myliobatidae), in the eastern Adriatic Sea. Cybium 28, 372–374. open url image1

Jaureguizar, A. J., and Milessi, A. C. (2008). Assessing the sources of the fishing down marine food web process in the Argentinean–Uruguayan Common Fishing Zone. Scientia Marina 72, 25–36. open url image1

Jaureguizar, A. J., Menni, R., Guerrero, R., and Lasta, C. (2004). Environmental factors structuring fish communities of the Río de la Plata estuary. Fisheries Research 66, 195–211.
Environmental factors structuring fish communities of the Río de la Plata estuary.CrossRef | open url image1

Krebs, C. (1989). ‘Ecological Methodology.’ (Harper & Row: New York.)

Kyne, P. M., and Bennett, M. B. (2002). Diet of the eastern shovelnose ray, Aptychotrema rostrata (Shaw & Nodder, 1794), from Moreton Bay, Queensland, Australia. Marine and Freshwater Research 53, 679–686.
Diet of the eastern shovelnose ray, Aptychotrema rostrata (Shaw & Nodder, 1794), from Moreton Bay, Queensland, Australia.CrossRef | open url image1

Last, P. R., and Stevens, J. D. (2009). ‘Sharks and Rays of Australia’, 2nd edn. (Harvard University Press: Cambridge, MA, USA.)

Lercari, D., and Arreguín-Sánchez, F. (2009). An ecosystem modelling approach to deriving viable harvest strategies for multispecies management of the Northern Gulf of California. Aquatic Conservation: Marine and Freshwater Ecosystems 19, 384–397.
An ecosystem modelling approach to deriving viable harvest strategies for multispecies management of the Northern Gulf of California.CrossRef | open url image1

Lercari, D., Horta, S., Martínez, G., Calliari, D., and Bergamino, L. (2015). A food web analysis of the Río de la Plata estuary and adjacent shelf ecosystem: trophic structure, biomass flows and the role of fisheries. Hydrobiologia 742, 39–58.
A food web analysis of the Río de la Plata estuary and adjacent shelf ecosystem: trophic structure, biomass flows and the role of fisheries.CrossRef | open url image1

López-García, J., Navia, A. F., Mejía-Falla, P. A., and Rubio, E. A. (2012). Feeding habits and trophic ecology of Dasyatis longa (Elasmobranchii: Myliobatiformes): sexual, temporal and ontogenetic effects. Journal of Fish Biology 80, 1563–1579.
Feeding habits and trophic ecology of Dasyatis longa (Elasmobranchii: Myliobatiformes): sexual, temporal and ontogenetic effects.CrossRef | 22497397PubMed | open url image1

Lucifora, L. O., Menni, R. C., and Escalante, A. H. (2005). Reproduction, abundance, and feeding habits of the broadnose sevengill shark, Notorynchus cepedianus, in north Patagonia, Argentina. Marine Ecology Progress Series 289, 237–244.
Reproduction, abundance, and feeding habits of the broadnose sevengill shark, Notorynchus cepedianus, in north Patagonia, Argentina.CrossRef | open url image1

Lucifora, L. O., García, V. B., Menni, R. C., and Escalante, A. H. (2006). Food habits, selectivity, and foraging modes of the school shark, Galeorhinus galeus. Marine Ecology Progress Series 315, 259–270.
Food habits, selectivity, and foraging modes of the school shark, Galeorhinus galeus.CrossRef | open url image1

Lucifora, L. O., García, V. B., and Escalante, A. H. (2009a). How can the feeding habits of the sand tiger shark, Carcharias taurus, influence the success of conservation programs? Animal Conservation 12, 291–301.
How can the feeding habits of the sand tiger shark, Carcharias taurus, influence the success of conservation programs?CrossRef | open url image1

Lucifora, L. O., García, V. B., Menni, R. C., Escalante, A. H., and Hozbor, N. M. (2009b). Effects of body size, age and maturity stage on diet in a large shark: ecological and applied implications. Ecological Research 24, 109–118.
Effects of body size, age and maturity stage on diet in a large shark: ecological and applied implications.CrossRef | open url image1

Luiselli, L. (2006). Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114, 193–211.
Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns.CrossRef | open url image1

Main, C. E., and Collins, M. A. (2011). Diet of the Antarctic starry ray Amblyraja georgiana (Rajidae, Chondrichthyes) at South Georgia, Southern Ocean. Polar Biology 34, 389–396.
Diet of the Antarctic starry ray Amblyraja georgiana (Rajidae, Chondrichthyes) at South Georgia, Southern Ocean.CrossRef | open url image1

Marshall, A. D., Kyne, P. M., and Bennett, M. B. (2008). Comparing the diet of two sympatric urolophid elasmobranchs (Trygonoptera testacea Müller & Henle and Urolophus kapalensis Yearsley & Last): evidence of ontogenetic shifts and possible resource partitioning. Journal of Fish Biology 72, 883–898.
Comparing the diet of two sympatric urolophid elasmobranchs (Trygonoptera testacea Müller & Henle and Urolophus kapalensis Yearsley & Last): evidence of ontogenetic shifts and possible resource partitioning.CrossRef | open url image1

McEachran, J. D., and de Carvalho, M. R. (2002a). Myliobatidae: eagle rays. In ‘The Living Marine Resources of the Western Central Atlantic. Volume 1: Introduction, Molluscs, Crustaceans, Hagfishes, Sharks, Batoid Fishes, and Chimaeras. FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication 5’. (Ed. K. E. Carpenter.) pp. 578–582. (Food and Agriculture Organization of the United Nations: Rome, Italy.)

McEachran, J. D., and de Carvalho, M. R. (2002b). Urotrygonidae: American round stingrays. In ‘The Living Marine Resources of the Western Central Atlantic. Volume 1: Introduction, Molluscs, Crustaceans, Hagfishes, Sharks, Batoid Fishes, and Chimaeras. FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication 5’. (Ed. K. E. Carpenter.) pp. 572–574. (Food and Agriculture Organization of the United Nations: Rome, Italy.)

McEachran, J. D., and Notarbartolo di Sciara, G. (1995). Myliobatidae: águilas marinas. In ‘Guía FAO para la Identificación de Especies para los Fines de la Pesca. Pacífico Centro-Oriental. Volumen II. Vertebrados Parte 1’. (Eds W. Fischer, F. Krupp, W. Schneider, C. Sommer, K. E. Carpenter and V. H. Niem.) pp. 765–768. (Food and Agriculture Organization of the United Nations: Rome, Italy.)

Menni, R. C., and Lucifora, L. O. (2007). Condrictios de la Argentina y Uruguay: lista de trabajo. ProBiota 11, 1–15. open url image1

Menni, R. C., Jaureguizar, A. J., Stehmann, M. F. W., and Lucifora, L. O. (2010). Marine biodiversity at the community level: zoogeography of sharks, skates, rays and chimaeras in the southwestern Atlantic. Biodiversity and Conservation 19, 775–796.
Marine biodiversity at the community level: zoogeography of sharks, skates, rays and chimaeras in the southwestern Atlantic.CrossRef | open url image1

Molina, J. M., and Lopez Cazorla, A. (2015). Biology of Myliobatis goodei (Springer, 1939), a widely distributed eagle ray, caught in northern Patagonia. Journal of Sea Research 95, 106–114.
Biology of Myliobatis goodei (Springer, 1939), a widely distributed eagle ray, caught in northern Patagonia.CrossRef | open url image1

Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P., and Peterson, C. H. (2007). Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 1846–1850.
Cascading effects of the loss of apex predatory sharks from a coastal ocean.CrossRef | 1:CAS:528:DC%2BD2sXjsFSitrw%3D&md5=64e88aba1daf6b4d4f0eb9d1379097f6CAS | 17395829PubMed | open url image1

Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology 12, 39–45.
Species redundancy and ecosystem reliability.CrossRef | open url image1

Navarro-González, J. A., Bohórquez-Herrera, J., Navia, A. F., and Cruz-Escalona, V. H. (2012). Diet composition of batoids on the continental shelf off Nayarit and Sinaloa, Mexico. Ciencias Marinas 38, 347–362.
Diet composition of batoids on the continental shelf off Nayarit and Sinaloa, Mexico.CrossRef | open url image1

Navia, A. F., Cortés, E., and Mejía-Falla, P. A. (2010). Topological analysis of the ecological importance of elasmobranch fishes: a food web study on the Gulf of Tortugas, Colombia. Ecological Modelling 221, 2918–2926.
Topological analysis of the ecological importance of elasmobranch fishes: a food web study on the Gulf of Tortugas, Colombia.CrossRef | open url image1

Navia, A. F., Torres, A., Mejía-Falla, P. A., and Giraldo, A. (2011). Sexual, ontogentic, temporal and spatial effects on the diet of Urotrygon rogersi (Elasmobranchii: Myliobatiformes). Journal of Fish Biology 78, 1213–1224.
Sexual, ontogentic, temporal and spatial effects on the diet of Urotrygon rogersi (Elasmobranchii: Myliobatiformes).CrossRef | 1:STN:280:DC%2BC3MvgvVyrtg%3D%3D&md5=cd98cf0d5f3ee65c9273d433bb17876eCAS | 21463316PubMed | open url image1

O’Shea, O. R., Thums, M., van Keulen, M., and Meekan, M. G. (2012). Bioturbation by stingrays at Ningaloo Reef, Western Australia. Marine and Freshwater Research 63, 189–197.
Bioturbation by stingrays at Ningaloo Reef, Western Australia.CrossRef | open url image1

O’Shea, O. R., Thums, M., van Keulen, M., Kempster, R. M., and Meekan, M. G. (2013). Dietary partitioning by five sympatric species of stingray (Dasyatidae) on coral reefs. Journal of Fish Biology 82, 1805–1820.
Dietary partitioning by five sympatric species of stingray (Dasyatidae) on coral reefs.CrossRef | 1:STN:280:DC%2BC3snptlGqtw%3D%3D&md5=0f00f727790ddf9877022657d278043cCAS | 23731138PubMed | open url image1

Orlov, A. M. (1998). The diets and feeding habits of some deep-water benthic skates (Rajidae) in the Pacific waters off the northern Kuril Islands and southeastern Kamchatka. Alaska Fishery Research Bulletin 5, 1–17. open url image1

Pardo, S. A., Burgess, K. B., Teixeira, D., and Bennett, M. B. (2015). Local-scale resource partitioning by stingrays on an intertidal flat. Marine Ecology Progress Series 533, 205–218.
Local-scale resource partitioning by stingrays on an intertidal flat.CrossRef | open url image1

Peterson, C. H., Fodrie, F. J., Summerson, H. C., and Powers, S. P. (2001). Site-specific and density-dependent extinction of prey by schooling rays: generation of a population sink in top-quality habitat for bay scallops. Oecologia 129, 349–356.
Site-specific and density-dependent extinction of prey by schooling rays: generation of a population sink in top-quality habitat for bay scallops.CrossRef | open url image1

Pinkas, L., Oliphant, M. S., and Iverson, I. L. K. (1971). Food habits of albacore, bluefin tuna, and bonito in California waters. Alaska Fishery Research Bulletin 152, 1–105. open url image1

Platell, M. E., Potter, I. C., and Clarke, K. R. (1998). Resource partitioning by four species of elasmobranchs (Batoidea: Urolophidae) in coastal waters of temperate Australia. Marine Biology 131, 719–734.
Resource partitioning by four species of elasmobranchs (Batoidea: Urolophidae) in coastal waters of temperate Australia.CrossRef | open url image1

Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., Daily, G., Castilla, J. C., Lubchenco, J., and Paine, R. T. (1996). Challenges in the quest for keystones. Bioscience 46, 609–620.
Challenges in the quest for keystones.CrossRef | open url image1

Refi, S. M. (1975). Myliobatidae y Dasyatidae del litoral bonaerense de la República Argentina y estudio comparado del mixopterigio (Chondrichthyes, Myliobatidae). Physica A 34, 121–136. open url image1

Reich, P. B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S. E., Flynn, D. F. B., and Eisenhauer, N. (2012). Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592.
Impacts of biodiversity loss escalate through time as redundancy fades.CrossRef | 1:CAS:528:DC%2BC38Xmt1Gnsbk%3D&md5=c26b3416f08855d95ec0f1e5e700ff87CAS | 22556253PubMed | open url image1

Rezende, G. A., Capitoli, R. R., and Vooren, C. M. (2006). A alimentação das raias Myliobatis goodei e Myliobatis sp. no sul do Brasil. V Reunião da Sociedade Brasileira para o Estudo de Elasmobrânquios, Itajaí.

Rezende, E. L., Albert, E. M., Fortuna, M. A., and Bascompte, J. (2009). Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecology Letters 12, 779–788.
Compartments in a marine food web associated with phylogeny, body mass, and habitat structure.CrossRef | 19490028PubMed | open url image1

Romero Camarena, M., and Bustamante Ruiz, M. (2007). Estudio de tiburones con fines de conservación y uso sostenible. Informe Anual 2007, Instituto del Mar del Perú, Callao. Available at http://www.imarpe.pe/imarpe/archivos/informes/imarpe_19)_estudio_de_tiburones_web.pdf [Verified 28 June 2016].

Ruiz, D. J., and Wolff, M. (2011). The Bolivar Channel ecosystem of the Galapagos Marine Reserve: energy flow structure and role of keystone groups. Journal of Sea Research 66, 123–134.
The Bolivar Channel ecosystem of the Galapagos Marine Reserve: energy flow structure and role of keystone groups.CrossRef | open url image1

Ruocco, N. L., Lucifora, L. O., Díaz de Astarloa, J. M., and Bremec, C. (2009). Diet of the white-dotted skate, Bathyraja albomaculata, in waters of Argentina. Journal of Applied Ichthyology 25, 94–97.
Diet of the white-dotted skate, Bathyraja albomaculata, in waters of Argentina.CrossRef | open url image1

Ruocco, N. L., Lucifora, L. O., Díaz de Astarloa, J. M., Mabragaña, E., and Delpiani, S. M. (2012). Morphology and DNA barcoding reveal a new species of eagle ray from the Southwestern Atlantic: Myliobatis ridens sp. nov. (Chondrichthyes, Myliobatiformes, Myliobatidae). Zoological Studies 51, 862–873.
| 1:CAS:528:DC%2BC3sXhtFCrt7s%3D&md5=3804de9f609139690a6d0262f703ecf0CAS | open url image1

Šantić, M., Rađa, B., and Pallaoro, A. (2013). Feeding habits of brown ray (Raja miraletus Linnaeus, 1758) from the eastern central Adriatic Sea. Marine Biology Research 9, 301–308.
Feeding habits of brown ray (Raja miraletus Linnaeus, 1758) from the eastern central Adriatic Sea.CrossRef | open url image1

Schluessel, V., Bennett, M. B., and Collin, S. P. (2010). Diet and reproduction in the white-spotted eagle ray Aetobatus narinari from Queensland, Australia and the Penghu Islands, Taiwan. Marine and Freshwater Research 61, 1278–1289.
Diet and reproduction in the white-spotted eagle ray Aetobatus narinari from Queensland, Australia and the Penghu Islands, Taiwan.CrossRef | open url image1

Serena, F. (2005). ‘Field Identification Guide to the Sharks and Rays of the Mediterranean and Black Sea. FAO Species Identification Guide for Fishery Purposes.’ (Food and Agriculture Organization of the United Nations: Rome, Italy.)

Sherman, K., Belkin, I., O’Reilly, J., and Hyde, K. (2007). Variability of large marine ecosystems in response to global climate change. ICES CM 2007/D: 20. Available at http://www.ices.dk/sites/pub/CM%20Doccuments/CM-2007/D/D2007.pdf [Verified 22 June 2016]

Sommerville, E., Platell, M. E., White, W. T., Jones, A. A., and Potter, I. C. (2011). Partitioning of food resources by four abundant, co-occurring elasmobranch species: relationships between diet and both body size and season. Marine and Freshwater Research 62, 54–65.
Partitioning of food resources by four abundant, co-occurring elasmobranch species: relationships between diet and both body size and season.CrossRef | open url image1

Summers, A. P. (2000). Stiffening the stingray skeleton: an investigation of durophagy in myliobatid stingrays (Chondrichthyes, Batoidea, Myliobatidae). Journal of Morphology 243, 113–126.
Stiffening the stingray skeleton: an investigation of durophagy in myliobatid stingrays (Chondrichthyes, Batoidea, Myliobatidae).CrossRef | 1:STN:280:DC%2BD3c7is1WgtQ%3D%3D&md5=fa4716fd0db5582f81eaf20d9d59f47dCAS | 10658196PubMed | open url image1

Szczepanski, J. A., and Bengtson, D. A. (2014). Quantitative food habits of the bullnose ray, Myliobatis freminvillii, in Delaware Bay. Environmental Biology of Fishes 97, 981–997.
Quantitative food habits of the bullnose ray, Myliobatis freminvillii, in Delaware Bay.CrossRef | open url image1

Thrush, S. F., Pridmore, R. D., Hewitt, J. E., and Cummings, V. J. (1991). Impact of ray feeding disturbances on sandflat macrobenthos: do communities dominated by polychaetes or shellfish respond differently? Marine Ecology Progress Series 69, 245–252.
Impact of ray feeding disturbances on sandflat macrobenthos: do communities dominated by polychaetes or shellfish respond differently?CrossRef | open url image1

Thrush, S. F., Pridmore, R. D., Hewitt, J. E., and Cummings, V. J. (1994). The importance of predators on a sandflat: interplay between seasonal changes in prey densities and predator effects. Marine Ecology Progress Series 107, 211–222.
The importance of predators on a sandflat: interplay between seasonal changes in prey densities and predator effects.CrossRef | open url image1

VanBlaricom, G. R. (1982). Experimental analyses of structural regulation in a marine sand community exposed to oceanic swell. Ecological Monographs 52, 283–305.
Experimental analyses of structural regulation in a marine sand community exposed to oceanic swell.CrossRef | open url image1

Venables, W. N., and Ripley, B. D. (2002). ‘Modern Applied Statistics with S-Plus’, 4th edn. (Springer: New York.)

Wallace, R. K., and Ramsey, J. S. (1983). Reliability in measuring diet overlap. Canadian Journal of Fisheries and Aquatic Sciences 40, 347–351.
Reliability in measuring diet overlap.CrossRef | open url image1

White, W. T., and Last, P. R. (2012). A review of the taxonomy of chondrichthyan fishes: a modern perspective. Journal of Fish Biology 80, 901–917.
A review of the taxonomy of chondrichthyan fishes: a modern perspective.CrossRef | 1:STN:280:DC%2BC38rksVOksA%3D%3D&md5=5ebdc955617aa196674b3868df29885bCAS | 22497367PubMed | open url image1

White, W. T., and Sommerville, E. (2010). Elasmobranchs of tropical marine ecosystems. In ‘Sharks and Their Relatives II: Biodiversity, Adaptive Physiology and Conservation’. (Eds J. C. Carrier, J. A. Musick and M. R. Heithaus.) pp. 159–239. (CRC Press: Boca Raton, FL, USA.)

White, W. T., Kawauchi, J., Corrigan, S., Rochel, E., and Naylor, G. J. P. (2015). Redescription of the eagle rays Myliobatis hamlyni Ogilby, 1911 and M. tobijei Bleeker, 1854 (Myliobatiformes: Myliobatidae) from the East Indo-West Pacific. Zootaxa 3948, 521–548.
Redescription of the eagle rays Myliobatis hamlyni Ogilby, 1911 and M. tobijei Bleeker, 1854 (Myliobatiformes: Myliobatidae) from the East Indo-West Pacific.CrossRef | 25947786PubMed | open url image1

Yick, J. L., Tracey, S. R., and White, R. W. G. (2011). Niche overlap and trophic resource partitioning of two sympatric batoids co-inhabiting an estuarine system in southeast Australia. Journal of Applied Ichthyology 27, 1272–1277.
Niche overlap and trophic resource partitioning of two sympatric batoids co-inhabiting an estuarine system in southeast Australia.CrossRef | open url image1



Rent Article (via Deepdyve) Export Citation

View Altmetrics