Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Food chain length in a large floodplain river: planktonic or benthic reliance as a limiting factor

M. Saigo A C , L. Ruffener A , P Scarabotti A B and M. Marchese A B

A Instituto Nacional de Limnología (INALI), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional del Litoral (CONICET-UNL), Ciudad Universitaria, Santa Fe, 3000, Argentina.

B Facultad de Humanidades y Ciencias–Universidad Nacional del Litoral (FHUC-UNL), Ciudad Universitaria, Santa Fe, 3000, Argentina.

C Corresponding author. Email: miguelsaigo@gmail.com

Marine and Freshwater Research - http://dx.doi.org/10.1071/MF16269
Submitted: 1 June 2016  Accepted: 1 September 2016   Published online: 4 October 2016

Abstract

Food chain length (FCL) is a key integrative variable describing ecosystem functioning. The aim of the present study was to test the hypothesis that the relative importance of planktonic and benthic energy pathways is a major factor affecting FCL in the Middle Paraná River. Samples were obtained from in eight waterbodies, measuring chlorophyll-a concentrations and the abundance of benthic invertebrates and the trophic position of top predators by stable isotope analysis. There was no evidence that resource availability, disturbances or ecosystem size limited FCL. Similarly, the body size and trophic position of predators were not correlated. However, the relative abundance of planktonic and benthic resources was correlated with FCL. In addition, stable isotopes analysis showed that the benthic reliance of top predators is correlated with their trophic position. The results of the present study indicate that because the major benthic primary consumer is a large fish (Prochilodus lineatus), the size structure of individual food chains is an important factor determining FCL. Whereas in floodplain rivers large detritivorous fishes are targets of commercial fishing, overfishing in the Middle Paraná River could be expected to increase FCL, the opposite effect to that seen in marine environments.

Additional keywords: benthos, fish, food webs, plankton, stable isotopes.


References

Boecklen, W. J., Yarnes, C. T., Cook, B. A., and James, A. C. (2011). On the use of stable isotopes in trophic ecology. Annual Review of Ecology Evolution and Systematics 42, 411–440.
On the use of stable isotopes in trophic ecology.CrossRef | open url image1

Cohen, J., and Newman, C. (1991). Community area and food-chain length: theoretical predictions. American Naturalist 138, 1542–1554.
Community area and food-chain length: theoretical predictions.CrossRef | open url image1

Doi, H., Chang, K. H., Ando, T., Ninomiya, I., Imai, H., and Nakano, S. I. (2009). Resource availability and ecosystem size predict food chain length in pond ecosystems. Oikos 118, 138–144.
Resource availability and ecosystem size predict food chain length in pond ecosystems.CrossRef | open url image1

Fretwell, S. D. (1987). Food chain dynamics: the central theory of ecology? Oikos 50, 291–301.
Food chain dynamics: the central theory of ecology?CrossRef | open url image1

Hoeinghaus, D. J., Winemiller, K. O., and Agostinho, A. A. (2008). Hydrogeomorphology and river impoundment affect food-chain length of diverse Neotropical food webs. Oikos 117, 984–995.
Hydrogeomorphology and river impoundment affect food-chain length of diverse Neotropical food webs.CrossRef | open url image1

Layman, C. A., Winemiller, K. O., Arrington, D. A., and Jepsen, D. B. (2005). Body size and trophic position in a diverse tropical food web. Ecology 86, 2530–2535.
Body size and trophic position in a diverse tropical food web.CrossRef | open url image1

Lorenzen, C. (1967). Vertical distribution of chlorophyll and phaeopigments: Baja California. Deep-Sea Research 14, 735–745.
| 1:CAS:528:DyaF1cXhtVWqt74%3D&md5=5bec0f7c83ca330cd1bc2eb8af63365cCAS | open url image1

Matthews, B., and Mazumder, A. (2005). Temporal variation in body composition (C : N) helps explain seasonal patterns of zooplankton δ13C. Freshwater Biology 50, 502–515.
Temporal variation in body composition (C : N) helps explain seasonal patterns of zooplankton δ13C.CrossRef | open url image1

McConnaughey, T., and McRoy, C. P. (1979). Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology 53, 257–262.
Food-web structure and the fractionation of carbon isotopes in the Bering Sea.CrossRef | 1:CAS:528:DyaL3cXhtV2gtbk%3D&md5=c3929bf1151669febd9544225556e53bCAS | open url image1

McHugh, P. A., McIntosh, A. R., and Jellyman, P. G. (2010). Dual influences of ecosystem size and disturbance on food chain length in streams. Ecology Letters 13, 881–890.
Dual influences of ecosystem size and disturbance on food chain length in streams.CrossRef | 20482579PubMed | open url image1

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., and Torres, F. (1998). Fishing down marine food webs. Science 279, 860–863.
Fishing down marine food webs.CrossRef | 1:CAS:528:DyaK1cXhtVOjtro%3D&md5=010a05bb1f3a3164109057abbef3aaf7CAS | 9452385PubMed | open url image1

Pimm, S. L. (1982). ‘Food Webs.’ (Chapman & Hall: London, UK.)

Pimm, S. L., and Lawton, J. (1978). The number of trophic levels in ecological communities. Nature 275, 542–544.
The number of trophic levels in ecological communities.CrossRef | open url image1

Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718.
Using stable isotopes to estimate trophic position: models, methods, and assumptions.CrossRef | open url image1

Post, D. M., and Takimoto, G. (2007). Proximate structural mechanisms for variation in food-chain length. Oikos 116, 775–782.
Proximate structural mechanisms for variation in food-chain length.CrossRef | open url image1

Post, D. M., Pace, M. L., and Hairston, N. G. (2000). Ecosystem size determines food-chain length in lakes. Nature 405, 1047–1049.
Ecosystem size determines food-chain length in lakes.CrossRef | 1:CAS:528:DC%2BD3cXkvFKlu7Y%3D&md5=33b9c6032cd21f8b15d2a9e41f4e0090CAS | 10890443PubMed | open url image1

Post, D. M., Layman, C. A., Arrington, D. A., Takimoto, G., Quattrochi, J., and Montaña, C. (2007). Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189.
Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses.CrossRef | 17225157PubMed | open url image1

Rice, J., and Gislason, H. (1996). Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models. ICES Journal of Marine Science 53, 1214–1225.
Patterns of change in the size spectra of numbers and diversity of the North Sea fish assemblage, as reflected in surveys and models.CrossRef | open url image1

Romanuk, T. N., Hayward, A., and Hutchings, J. A. (2011). Trophic level scales positively with body size in fishes. Global Ecology and Biogeography 20, 231–240.
Trophic level scales positively with body size in fishes.CrossRef | open url image1

Rossi, L., Cordiviola, E., and Parma, M. J. (2007). Fishes. In ‘The Middle Paraná River: Limnology of a Subtropical Wetland’. (Eds M. H. Iriondo, J. C. Paggi and M. J. Parma.) pp. 303–326. (Springer: Berlin.)

Sabo, J. L., Finlay, J. C., and Post, D. M. (2009). Food chains in freshwaters. Annals of the New York Academy of Sciences 1162, 187–220.
Food chains in freshwaters.CrossRef | 19432649PubMed | open url image1

Sabo, J. L., Finlay, J. C., Kennedy, T., and Post, D. M. (2010). The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330, 965–967.
The role of discharge variation in scaling of drainage area and food chain length in rivers.CrossRef | 1:CAS:528:DC%2BC3cXhtl2isbjM&md5=00efe1144726284b12b14a1b7d015c71CAS | 20947729PubMed | open url image1

Saigo, M., Zilli, F. L., Marchese, M. R., and Demonte, D. (2015). Trophic level, food chain length and omnivory in the Paraná River: a food web model approach in a floodplain river system. Ecological Research 30, 843–852.
Trophic level, food chain length and omnivory in the Paraná River: a food web model approach in a floodplain river system.CrossRef | open url image1

Schoener, T. W. (1989). Food webs from the small to the large. Ecology 70, 1559–1589.
Food webs from the small to the large.CrossRef | open url image1

Spencer, M., and Warren, P. H. (1996). The effects of habitat size and productivity on food web structure in small aquatic microcosms. Oikos 75, 419–430.
The effects of habitat size and productivity on food web structure in small aquatic microcosms.CrossRef | open url image1

Takimoto, G., and Post, D. M. (2013). Environmental determinants of food-chain length: a meta-analysis. Ecological Research 28, 675–681.
Environmental determinants of food-chain length: a meta-analysis.CrossRef | open url image1

Thompson, R. M., and Townsend, C. R. (2005). Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos 108, 137–148.
Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams.CrossRef | open url image1

Vander Zanden, M. J., and Rasmussen, J. B. (1996). A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecological Monographs 66, 451–477.
A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout.CrossRef | open url image1

Vanderklift, M. A., and Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169–182.
Sources of variation in consumer-diet δ15N enrichment: a meta-analysis.CrossRef | 12802678PubMed | open url image1

Warfe, D. M., Jardine, T. D., Pettit, N. E., Hamilton, S. K., Pusey, B. J., Bunn, S. E., Davies, P. M., and Douglas, M. M. (2013). Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers. PLoS One 8, e66240.
Productivity, disturbance and ecosystem size have no influence on food chain length in seasonally connected rivers.CrossRef | 1:CAS:528:DC%2BC3sXhtVanu7jF&md5=dfc307b031d847c13e869da64393a219CAS | 23776641PubMed | open url image1

Williams, A. J., and Trexler, J. C. (2006). A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern Everglades. Hydrobiologia 569, 493–504.
A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern Everglades.CrossRef | 1:CAS:528:DC%2BD28XnsFyju78%3D&md5=1b4fd6307815ca4d171fac34ca94ef44CAS | open url image1

Young, H. S., Mccauley, D. J., Dunbar, R. B., Hutson, M. S., Ter-Kuile, A. M., and Dirzo, R. (2013). The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems. Ecology 94, 692–701.
The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.CrossRef | 23687895PubMed | open url image1



Export Citation