Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Physiological response of Arundo donax L. to thallium accumulation in a simulated wetland

Gaozhong Pu A B , Denan Zhang A , Danjuan Zeng A , Guangping Xu A and Yuqing Huang A B
+ Author Affiliations
- Author Affiliations

A Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, 85 Yanshan Street, Yanshan District, Guilin, 541006, P.R. China.

B Corresponding authors. Email: pukouchy@hotmail.com; hyqcoco@gxib.cn

Marine and Freshwater Research - https://doi.org/10.1071/MF17093
Submitted: 7 April 2017  Accepted: 20 September 2017   Published online: 12 December 2017

Abstract

A simulated wetland experiment was used to investigate the effect of thallium (Tl) accumulation on the growth of Arundo donax L., its photosynthetic characteristics and its antioxidant enzyme activities. Tl accumulated in the order of stems < leaves < roots and increased gradually with increasing Tl concentrations (from 0 to 2.5 µg L–1). Moderate Tl applications (from 0.2 to 2.5 µg L–1) increased the rate of both photosynthesises (Pn) and transpiration (Tr), as well as catalase and peroxidase activity. Tl significantly affected stomatal conductivity, but had no effect on the relative chlorophyll content (SPAD values) or the potential and effective photochemical efficiency of photosystem II. However, intercellular CO2 concentrations and superoxide dismutase decreased in response to increasing Tl concentrations. Although 50 µg L–1 Tl significantly decreased the SPAD values, as well as the potential and effective photochemical efficiency of photosystem II, it had no effect on Pn or Tr. These results suggest that root restriction and oxidative stress are involved in the mechanism of Tl toxicity, but the photosynthetic system of A. donax was not harmed by certain concentrations of Tl, indicating the strong tolerance of this species to increased Tl pollution.

Additional keywords: antioxidant enzymes, photochemical efficiency.


References

Al-Attar, A. F., Martin, M. H., and Nickless, G. (1988). Uptake and toxicity of cadmium, mercury and thallium to Lolium perenne seedlings. Chemosphere 17, 1219–1225.
Uptake and toxicity of cadmium, mercury and thallium to Lolium perenne seedlings.CrossRef | 1:CAS:528:DyaL1cXks1ynur4%3D&md5=bf15de1091334e7ad3da841dd25bcf36CAS |

Alshaal, T., Domokos-Szabolcsy, É., Márton, L., Czakó, M., Kátai, J., Balogh, P., Elhawat, N., El-Ramady, H., and Fári, M. (2013). Phytoremediation of bauxite-derived red mud by giant reed (Arundo donax L.). Environmental Chemistry Letters 11, 295–302.
Phytoremediation of bauxite-derived red mud by giant reed (Arundo donax L.).CrossRef | 1:CAS:528:DC%2BC3sXhtlCqs7rP&md5=71b52f3a472246750021aa7d608c2ad3CAS |

Alshaal, T., Elhawat, N., Domokos-Szabolcsy, É., Kátai, J., Márton, L., Czako, M., El-Ramady, H., and Fári, M. (2015). Giant reed (Arundo donax L.): a green technology for clean environment. In ‘Phytoremediation: Management of Environmental Contaminants’. (Eds A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, and L. Newman.) Vol. I, pp. 3–20. (Springer Science Business Media BV: Switzerland.)

Anderson, C. W. N., Brooks, R. R., Chiarucci, A., LaCoste, C. J., Leblanc, M., Robinson, B. H., Simcock, R., and Stewart, R. B. (1999). Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration 67, 407–415.
Phytomining for nickel, thallium and gold.CrossRef | 1:CAS:528:DC%2BD3cXmtVKjsw%3D%3D&md5=c83b635638eee06e201ceb4cc1a78d73CAS |

Andresen, E., Kappel, S., Stärk, H. J., Riegger, U., Borovec, J., Mattusch, J., Heinz, A., Schmelzer, C. E. H., Matoušková, Š., Dickinson, B., and Küpper, H. (2016). Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. New Phytologist 210, 1244–1258.
Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum.CrossRef | 1:CAS:528:DC%2BC28XnsVWht7k%3D&md5=336ee7e208d1ed77e847172ab60beb07CAS |

Belowitz, R., and Donnell, M. J. O. (2013). Ion-selective microelectrode measurements of Tl+ and K+ transport by the gut and associated epithelia in Chironomus riparius. Aquatic Toxicology 138–139, 70–80.
Ion-selective microelectrode measurements of Tl+ and K+ transport by the gut and associated epithelia in Chironomus riparius.CrossRef |

Cao, X., Ma, L. Q., and Tu, C. (2004). Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution 128, 317–325.
Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).CrossRef | 1:CAS:528:DC%2BD2cXjtFakug%3D%3D&md5=62a7ebe8a494eda36efd7a6cbbfae01cCAS |

Deng, H. M., Chen, Y. H., Liu, T., Wu, C. Q., Qiu, L., Wu, G. M., and Zeng, D. M. (2013). Study on the translocation and accumulation of Tl in soil–plant system. Environmental Chemistry 32, 1749–1757.
| 1:CAS:528:DC%2BC3sXhvFKrtb%2FL&md5=dfb013cf21b6824ac8b5ca0e25014bacCAS |

Elhawat, N., Alshaal, T., Domokos-Szabolcsy, É., El-Ramady, H., Márton, L., Czakó, M., Kátai, J., Balogh, P., Sztrik, A., Molnár, M., Popp, J., and Fári, M. G. (2014). Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater. Environmental Science and Pollution Research International 21, 7773–7780.
Phytoaccumulation potentials of two biotechnologically propagated ecotypes of Arundo donax in copper-contaminated synthetic wastewater.CrossRef | 1:CAS:528:DC%2BC2cXhtVGrur3J&md5=0e1b2e3fed76e8889f4701cf1a067189CAS |

Genty, B., Briantais, J. M., and Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87–92.
The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.CrossRef | 1:CAS:528:DyaL1MXhsFWntL4%3D&md5=7196078930e18ab08b2937e383d76eddCAS |

Gomez-Gonzalez, M. A., Garcia-Guinea, J., Labor, F., and Garrido, F. (2015). Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain). The Science of the Total Environment 536, 268–278.
Thallium occurrence and partitioning in soils and sediments affected by mining activities in Madrid province (Spain).CrossRef | 1:CAS:528:DC%2BC2MXht1elsbvM&md5=6a9c00570f59bf1089867317b1f63d90CAS |

Han, Z. P., Yang, Z. H., Wu, X., and Zhang, H. (2010). Effects of lead stress on the antioxidant enzymes activities in Arundo donax Linn. Journal of Nuclear Agriculture Sciences 24, 846–850.
| 1:CAS:528:DC%2BC3MXhsVagsL4%3D&md5=86ead0cf3157a5418bc0db4808869b93CAS |

Jia, Y. L., Xiao, T. F., Zhou, G. Z., and Ning, Z. P. (2013). Thallium at the interface of soil and green cabbage (Brassica oleracea L. var capitata L.): soil–plant transfer and influencing factors. The Science of the Total Environment 450–451, 140–147.
Thallium at the interface of soil and green cabbage (Brassica oleracea L. var capitata L.): soil–plant transfer and influencing factors.CrossRef |

Kaplan, D., Adriano, D. C., and Sajwan, K. S. (1990). Thallium toxicity in bean. Journal of Environmental Quality 19, 359–365.
Thallium toxicity in bean.CrossRef | 1:CAS:528:DyaK3cXls1Ojur0%3D&md5=1931ab4127f912c74645cf82b74a077aCAS |

Kausar, S., Qaisar, M., Iftikhar, A. R., Afsar, K., Sikandar, S., Mazhar, A. G., and Shahida, S. (2012). Potential of Arundo donax to treat chromium contamination. Ecological Engineering 42, 256–259.
Potential of Arundo donax to treat chromium contamination.CrossRef |

Korotkov, S. M., and Lapin, A. V. (2003). Thallium induces opening of the mitochondrial permeability transition pore in the inner membranes of rat liver mitochondria. Doklady. Biochemistry and Biophysics 392, 247–252.
Thallium induces opening of the mitochondrial permeability transition pore in the inner membranes of rat liver mitochondria.CrossRef | 1:CAS:528:DC%2BD3sXotVWltbk%3D&md5=4d6633bb6166901e48fff7a62adf2aabCAS |

Krasnodębska-Ostręga, B., Sadowska, M., and Ostrowska, S. (2012). Thallium speciation in plant tissues – TlIII found in Sinapis alba L. grown in soil polluted with tailing sediment containing thallium minerals. Talanta 93, 326–329.
Thallium speciation in plant tissues – TlIII found in Sinapis alba L. grown in soil polluted with tailing sediment containing thallium minerals.CrossRef |

LaCoste, C. J., Robinson, B. H., Brooks, R. R., Chiarucci, A., and Leblan, M. (1999). The phytoremediation potential of thallium-contaminated soils using Iberis and Biscutella species. International Journal of Phytoremediation 1, 327–338.
The phytoremediation potential of thallium-contaminated soils using Iberis and Biscutella species.CrossRef | 1:CAS:528:DC%2BD3cXmsVGmsw%3D%3D&md5=0a5270f66c8905c72982f1f5a19c0f09CAS |

LaCoste, C., Robinson, B., and Brooks, R. (2001). Uptake of thallium by vegetables: its significance for human health, phytoremediation, and phytomining. Journal of Plant Nutrition 24, 1205–1215.
Uptake of thallium by vegetables: its significance for human health, phytoremediation, and phytomining.CrossRef | 1:CAS:528:DC%2BD3MXlslOhsLs%3D&md5=d54e71fce456d189544c9cb78032a40cCAS |

Li, L., Hu, C. X., Tan, Q. L., Shi, K. L., Zhao, X. H., and Sun, X. C. (2016). Effects of Mo pollution on photosynthesis characteristics and yields of winter wheat. Journal of Agro-Environment Science 35, 620–626.
| 1:CAS:528:DC%2BC2sXlslWmsrk%3D&md5=1290d2a3085c3a2f5071ae31273770d6CAS |

Lichtenthaler, H. K., Langsdorf, G., Lenk, S., and Buschamann, C. (2005). Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43, 355–369.
Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system.CrossRef | 1:CAS:528:DC%2BD2MXhtVylu77F&md5=681f1a9f745bdbb3413aa4bff5246462CAS |

Liu, Q. J., Sun, X. C., Hu, C. X., and Tan, Q. L. (2009). Growth and photosynthesis characteristics of wheat (Triticum aestivum L.) under arsenic stress condition. Acta Ecologica Sinica 29, 854–859.
| 1:CAS:528:DC%2BD1MXktFKjs74%3D&md5=5bbd228f56a26e54debd20f0499661a0CAS |

Liu, T., Deng, H. M., Wang, Y. L., Chen, Y. H., Chen, M. C., Wu, G. M., Zeng, D. M., Du, G. Y., Gu, Y. S., and Xu, X. C. (2014). Growth inhibition of thallium(I)-nitrate on Duckweed (Lemna gibba L.) with relation to its oxidative stress. Asian Journal of Ecotoxicology 9, 1112–1117.

Mazur, R., Sadowska, M., Kowalewska, Ł., Abratowska, A., Kalaji, H. M., Mostowska, A., Garstka, M., and Krasnodębska-Ostręga, B. (2016). Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity. BMC Plant Biology 16, 191.
Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity.CrossRef |

Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M. M., and Azim, M. R. (2010). Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresource Technology 101, 5815–5819.
Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater.CrossRef | 1:CAS:528:DC%2BC3cXlt1Sitr0%3D&md5=0e1722eb00ee299e2acd3b6e8a1a82a8CAS |

Mohammed, D. (2017) Accumulation and toxicity of cadmium, lead and thallium in duckweed (Lemna minor L.). M.Ph. Thesis, University of Plymouth. Available at http://hdl.handle.net/10026.1/9285 [Verified 24 October 2017].

Nasso, N. D., Roncucci, N., and Bonari, E. (2013). Seasonal dynamics of aboveground and belowground biomass and nutrient accumulation and remobilization in giant reed (Arundo donax L.): a three-year study on marginal land. BioEnergy Research 6, 1–12.

Papazoglou, E. G. (2007). Arundo donax L. stress tolerance under irrigation with heavy metal aqueous solutions. Desalination 211, 304–313.
Arundo donax L. stress tolerance under irrigation with heavy metal aqueous solutions.CrossRef | 1:CAS:528:DC%2BD2sXlslWiur0%3D&md5=ef2ddfe240851728db06240dea9e3324CAS |

Papazoglou, E. G., Karantounias, G. A., Vemmos, S. N., and Bouranis, D. L. (2005). Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni. Environment International 31, 243–249.
Photosynthesis and growth responses of giant reed (Arundo donax L.) to the heavy metals Cd and Ni.CrossRef | 1:CAS:528:DC%2BD2MXnsVGrtg%3D%3D&md5=1081e069dd74d0a786b4e5c3b07a8f7bCAS |

Pavlíčková, J., Zbìral, J., Smatanová, M., Habarta, P., Houserová, P., and Kubáň, V. (2006). Uptake of thallium from naturally contaminated soils into vegetables. Food Additives and Contaminants 23, 484–491.
Uptake of thallium from naturally contaminated soils into vegetables.CrossRef |

Peter, A. L. J., and Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environment International 31, 493–501.
Thallium: a review of public health and environmental concerns.CrossRef | 1:CAS:528:DC%2BD2MXislensbk%3D&md5=c570b603c751919346619bf171685189CAS |

Pošćić, F., Marchiol, L., and Schat, H. (2013). Hyperaccumulation of thallium is population-specific and uncorrelated with caesium accumulation in the thallium hyperaccumulator, Biscutella laevigata. Plant and Soil 365, 81–91.
Hyperaccumulation of thallium is population-specific and uncorrelated with caesium accumulation in the thallium hyperaccumulator, Biscutella laevigata.CrossRef |

Radić, S., Vjetko, P. C., Glavas, K. A., Roje, V., Pevalek-Kozlina, B., and Pavlica, M. (2009). Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedinglings induced by thallium. Environmental Toxicology and Chemistry 28, 189–196.
Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedinglings induced by thallium.CrossRef |

Renkema, H., Koopmans, A., Hale, B., and Berkelaar, E. (2015). Thallium and potassium uptake kinetics and competition differ between durum wheat and canola. Environmental Science and Pollution Research International 22, 2166–2174.
Thallium and potassium uptake kinetics and competition differ between durum wheat and canola.CrossRef | 1:CAS:528:DC%2BC2cXhsVGis7jK&md5=a54fe91af5cce201fb1fd1d4bd69ea5cCAS |

Sager, M. (1998) Thallium in agricultural practice. In ‘Thallium in the Environment’. (Ed. J. Nriagu.) pp. 59–88. (Wiley: Toronto, ON, Canada.)

Sasmaz, M., Akgul, B., Yıldırım, D., and Sasmaz, A. (2016). Bioaccumulation of thallium by the wild plants grown in soils of mining area. International Journal of Phytoremediation 18, 1164–1170.
Bioaccumulation of thallium by the wild plants grown in soils of mining area.CrossRef | 1:CAS:528:DC%2BC28Xht1Wnu77I&md5=3950fe8b3dd7d4914b701fef5454c61cCAS |

Shah, K., and Nahakpam, S. (2012). Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiology and Biochemistry 57, 106–113.
Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars.CrossRef | 1:CAS:528:DC%2BC38XhtFaitL3E&md5=b4e90fbb8475cf08f4ae52647c564999CAS |

Siedlecka, A., Tukendorf, A., Sk’orzy’nska-Polit, E., Maksymiec, W., W’ojcik, M., Baszy’nski, T., and Krupa, Z. (2001) Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and Poaceae; other than Brassicaceae). In ‘Metals in the Environment’. (Ed. M. N. V. Prasad.) pp. 171–215. (Marcel Dekker Inc.: New York, NY, USA.)

Siegel, B. Z., and Siegel, S. M. (1976). Effect of potassium on thallium toxicity in cucumber seedlings: further evidence for potassium–thallium ion antagonism. Bioinorganic Chemistry 6, 341–345.
Effect of potassium on thallium toxicity in cucumber seedlings: further evidence for potassium–thallium ion antagonism.CrossRef | 1:CAS:528:DyaE2sXhvVCitbs%3D&md5=13a5701a5af08666e12f8028cb697363CAS |

Srivastava, S., Suprasanna, P., and D’Souza, S. F. (2011). Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248, 805–815.
Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate.CrossRef | 1:CAS:528:DC%2BC3MXhsVaht73F&md5=99d25a18f9f2f137909e1109a9c6e900CAS |

Sun, J. L., Zou, X., Ning, Z. P., Sun, M., Peng, J. Q., and Xiao, T. F. (2012). Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination. The Science of the Total Environment 441, 258–264.
Culturable microbial groups and thallium-tolerant fungi in soils with high thallium contamination.CrossRef | 1:CAS:528:DC%2BC38Xhslejsb7O&md5=b462f410ae61a3d3714b62eb3978302aCAS |

Tatsi, K., Turner, A., Handy, R. D., and Shaw, B. J. (2015). The acute toxicity of thallium to freshwater organisms: implications for risk assessment. The Science of the Total Environment 536, 382–390.
The acute toxicity of thallium to freshwater organisms: implications for risk assessment.CrossRef | 1:CAS:528:DC%2BC2MXht1ChurfP&md5=0eb1156e839f1909589e8ff65f131a2fCAS |

Tremel, A., Masson, P., Garraud, H., Donnard, O. F. X., Baize, D., and Mench, M. (1997). Thallium in French agrosystems – II. Concentration of thallium in field-grown rape and some other plant species. Environmental Pollution 97, 161–168.
Thallium in French agrosystems – II. Concentration of thallium in field-grown rape and some other plant species.CrossRef | 1:CAS:528:DyaK2sXntVKhsbY%3D&md5=24af168b730b764a0eae89183211c35bCAS |

Vaněk, A., Komárek, M., Chrastný, V., Bečka, D., Mihaljevič, M., Šebek, O., Panušková, G., and Schusterová, Z. (2010). Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils – agro-environmental implications. Journal of Hazardous Materials 182, 303–308.
Thallium uptake by white mustard (Sinapis alba L.) grown on moderately contaminated soils – agro-environmental implications.CrossRef |

Villaverde, M. S., and Verstraeten, S. V. (2003). Effects of thallium(I) and thallium(III) on liposome membrane physical properties. Archives of Biochemistry and Biophysics 417, 235–243.
Effects of thallium(I) and thallium(III) on liposome membrane physical properties.CrossRef | 1:CAS:528:DC%2BD3sXmslehtb0%3D&md5=60151c138fef9de3f8e56feb50395f23CAS |

Wierzbicka, M., Szarek-Łukaszewska, G., and Grodzińska, K. (2004). Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicology and Environmental Safety 59, 84–88.
Highly toxic thallium in plants from the vicinity of Olkusz (Poland).CrossRef | 1:CAS:528:DC%2BD2cXlvVWhsrk%3D&md5=fb82c41c11d85224f7d36a029a047c62CAS |

Xiao, T. F., Yang, F., Li, S. H., Zheng, B., and Ning, Z. (2012). Thallium pollution in China: a geo-environmental perspective. The Science of the Total Environment 421–422, 51–58.
Thallium pollution in China: a geo-environmental perspective.CrossRef |

Yang, M., Xiao, X., Miao, X., Guo, Z., and Wang, F. (2012). Effect of amendments on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead. Transactions of Nonferrous Metals Society of China 22, 1462–1469.
Effect of amendments on growth and metal uptake of giant reed (Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead.CrossRef | 1:CAS:528:DC%2BC3sXovFGqsLc%3D&md5=70696d2dce74dd5efc090a99ad3034ceCAS |

Yao, Y., Zhang, P., Wang, Z. C., and Chen, Y. H. (2009). Characterization of kale (Brassica oberacea var. acephala) under thallium stress by in situ attenuated total reflection FTIR. Guangpuxue Yu Guangpu Fenxi 29, 119–121.
| 1:CAS:528:DC%2BD1MXnsFaitw%3D%3D&md5=52d27a038834d1ddd84dbe242354dd58CAS |

Zhang, F. Q., Wang, Y. S., Lou, Z. P., and Dong, J. D. (2007). Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67, 44–50.
Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza).CrossRef | 1:CAS:528:DC%2BD2sXnslOjuw%3D%3D&md5=be15f0a55b60c40382ba075a074b2ce7CAS |



Export Citation

View Altmetrics