Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Historical analysis of blue marlin (Makaira nigricans Lacepède, 1802) catches by the pelagic longline fleet in the eastern Pacific Ocean

Emigdio Marín-Enríquez https://orcid.org/0000-0002-5007-9357 A D , Leonardo A. Abitia-Cárdenas B , Xchel G. Moreno-Sánchez B and Jorge S. Ramírez-Pérez C
+ Author Affiliations
- Author Affiliations

A CONACYT-Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Colonia Los Pinos 82000, Mazatlán, Sinaloa, México.

B Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN s/n, 23096, La Paz, Baja California Sur, México.

C Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Colonia Los Pinos 82000, Mazatlán, Sinaloa, México.

D Corresponding author. Email: emarin@conacyt.mx

Marine and Freshwater Research 71(4) 532-541 https://doi.org/10.1071/MF19088
Submitted: 27 October 2018  Accepted: 7 June 2019   Published: 6 September 2019

Abstract

We analysed a historical (1959–2017) database of blue marlin catches reported by the industrial pelagic longline fleet operating in the eastern Pacific Ocean. The time series of catch-per-unit-effort (CPUE) for the time period 1959–2015 was modelled as a function of temporal and environmental variables by using generalised additive mixed models (GAMM). CPUE predictions were made on an independent dataset (2016–2017). Results suggested that a higher nominal CPUE occurred near the equator during boreal winter, spring and autumn, with a shift towards the north during the boreal summer. Two high CPUE events were observed, one in the early 1960s and one in the early 1990s. The final GAMM explained 61% of the total variance of the CPUE time series. Only a small percentage of total deviance was explained by the environmental variables, so we suggest that changes in fleet-targeting practices are the main cause of the large variability in the time series. The final GAMM can be used to predict blue marlin CPUE with a prediction accuracy of 3–8 fish per 1000 hooks. We observed an important decline in CPUE from the early 2000s; the factors responsible for this decline should be further investigated.

Additional keywords: environmental variability, fisheries oceanography, generalised additive mixed models.


References

Abitia-Cárdenas, L. A., Galván-Magaña, F., Gutiérrez-Sánchez, F. J., Rodríguez-Romero, J., Aguilar-Palomino, B., and Moehl-Hitz, A. (1999). Diet of blue marlin Makaira mazara off the coast of Cabo San Lucas, Baja California Sur, Mexico. Fisheries Research 44, 95–100.
Diet of blue marlin Makaira mazara off the coast of Cabo San Lucas, Baja California Sur, Mexico.Crossref | GoogleScholarGoogle Scholar |

Abitia-Cárdenas, L. A., Arizmendi-Rodriguez, D., Gudiño-Gonzalez, N., and Galván-Magaña, F. (2010). Feeding of blue marlin Makaira nigricans off Mazatlan, Sinaloa, Mexico. Latin American Journal of Aquatic Research 38, 281–285.
Feeding of blue marlin Makaira nigricans off Mazatlan, Sinaloa, Mexico.Crossref | GoogleScholarGoogle Scholar |

Bigelow, K. A., Hampton, J., and Miyabe, N. (2002). Application of a habitat-based model to estimate the effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus). Fisheries Oceanography 11, 143–155.
Application of a habitat-based model to estimate the effective longline fishing effort and relative abundance of Pacific bigeye tuna (Thunnus obesus).Crossref | GoogleScholarGoogle Scholar |

Bigelow, K., Musyl, M. K., Poisson, F., and Kleiber, P. (2006). Pelagic longline gear depth and shoaling. Fisheries Research 77, 173–183.
Pelagic longline gear depth and shoaling.Crossref | GoogleScholarGoogle Scholar |

Block, B. A., Booth, D. T., and Carey, F. G. (1992). Depth and temperature of blue marlin Makaira nigricans, observed by acoustic telemetry. Marine Biology 114, 175–183.
Depth and temperature of blue marlin Makaira nigricans, observed by acoustic telemetry.Crossref | GoogleScholarGoogle Scholar |

Bocanegra-Castillo, N. (2007). Relaciones tróficas de los peces pelágicos asociados a la pesquería del atún en el océano Pacífico oriental. Ph.D. Thesis, Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, Mexico.

Brill, R. W., and Lutcavage, M. E. (2001). Understanding environmental influences of movements and depth distributions of tunas and billfishes can significantly improve population assessments. In ‘Islands in the Stream: Oceanography and Fisheries of the Charleston Bump’. (Ed. G. Sedberry.) Symposium 25, pp. 179–198. (American Fisheries Society: Bethesda, MD, USA)

Brill, R. W., Block, B. A., Boggs, C. H., Bigelow, K. A., Freund, E. V., and Marcinek, D. J. (1999). Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Marine Biology 133, 395–408.
Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-theoretic Approach’, 2nd edn. (Springer-Verlag, New York, NY, USA.)

Carlisle, A. B., Kochevar, R. E., Arostegui, M. C., Ganong, J. E., Castleton, M., Shcratwieser, J., and Block, B. A. (2017). Influence of temperature and oxygen on the distribution of blue marlin (Makaira nigricans) in the central Pacific. Fisheries Oceanography 26, 34–48.
Influence of temperature and oxygen on the distribution of blue marlin (Makaira nigricans) in the central Pacific.Crossref | GoogleScholarGoogle Scholar |

Ditton, R. B. (1996). ‘A Social and Economic Study of the Recreational Billfish Fishery in the Southern Baja area of Mexico.’ (Texas A&M University Press: College Station, TX, USA.)

Dominici, F., McDermott, A., Zeger, S. L., and Samet, J. M. (2002). On the use of generalized additive models in time-series studies of air pollution and health. American Journal of Epidemiology 156, 193–203.
On the use of generalized additive models in time-series studies of air pollution and health.Crossref | GoogleScholarGoogle Scholar | 12142253PubMed |

Farrell, E. R., Boustany, A. M., Halpin, P. N., and Hammond, D. L. (2014). Dolphinfish (Coryphaena hippurus) distribution in relation to biophysical ocean conditions in the northwest Atlantic. Fisheries Research 151, 177–190.
Dolphinfish (Coryphaena hippurus) distribution in relation to biophysical ocean conditions in the northwest Atlantic.Crossref | GoogleScholarGoogle Scholar |

Fiedler, P. C. (2002). The annual cycle of the Costa Rica Dome. Deep-sea Research – I. Oceanographic Research Papers 49, 321–338.
The annual cycle of the Costa Rica Dome.Crossref | GoogleScholarGoogle Scholar |

Fiedler, P. C., and Talley, L. D. (2006). Hydrography of the eastern tropical Pacific: a review. Progress in Oceanography 69, 143–180.
Hydrography of the eastern tropical Pacific: a review.Crossref | GoogleScholarGoogle Scholar |

Galván-Magaña, F. (1999). Relaciones tróficas interespecíficas de la comunidad de depredadores epipelágicos del océano pacífico oriental. Ph.D. Thesis, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Mèxico.

Goodyear, C. P., Luo, J., Prince, E. D., Hoolihan, J. P., Snodgrass, D., Orbensen, E. S., and Seraphy, J. E. (2008). Vertical habitat use of Atlantic blue marlin Makaira nigricans: interaction with pelagic longline gear. Marine Ecology Progress Series 365, 233–245.
Vertical habitat use of Atlantic blue marlin Makaira nigricans: interaction with pelagic longline gear.Crossref | GoogleScholarGoogle Scholar |

Graves, J. E., and McDowell, J. R. (2001). A genetic perspective on the stock structures of blue marlin and white marlin in the Atlantic Ocean. Collective volume of scientific papers. ICCAT Collective Volume of Scientific Papers 53, 180–187.

Hinton, M. G. (2001). Status of blue marlin in the Pacific Ocean. In ‘Inter-American Tropical Tuna Commission Stock Assessment Report 1: Status of Tunas and Billfish Stocks in 1999’. pp. 284–319, (IATTC: La Jolla, CA, USA.)

Hinton, M. G., Bayliff, W. H., and Suter, J. M. (2004). Assessment of swordfish in the eastern Pacific Ocean. In ‘5th Meeting. Document SAR-5-05-SWO’, 11–13 May 2004, La Jolla, CA. USA. (Inter-American Tropical Tuna Commission, Working Group on Stock Assessment: La Jolla, CA, USA.)

Hopper, C. N. (1990). Patterns of Pacific blue marlin reproduction in Hawaiian waters. In ‘Planning the Future of Billfishes’. (Ed. R. H. Stroud.) pp. 29–39. (National Coalition for Marine Conservation: Savannah, GA, USA.)

ISC Billfish Working Group (2016). Stock assessment update for blue marlin in the Pacific Ocean through 2014. In ‘16th Meeting of the International Scientific Committee for Tunas and Tuna-like Species in the North Pacific Ocean’, 13–18 July 2016, Sapporo, Japan. pp. 1–91. (International Scientific Committee for Tunas and Tuna like Species in the North Pacific Ocean: Japan)

Jentoft-Nilsen, M., Hanson, H., Uz, S., and Moran, A. (2016). 2015 El Niño disrupts ocean chlorophyll. (NASA and Goddard Space Flight Center; The SeaWiFS Project; and GeoEye.) Available at https://svs.gsfc.nasa.gov/30747 [Verified 26 July 2019].

Joseph, J., Klawe, W., and Murphy, P. (1988). ‘Tuna and Billfish. Fish without a Country.’ (Inter-American Tropical Tuna Commission: La Jolla, CA, USA.)

Kessler, W. (2006). The circulation of the eastern tropical Pacific: a review. Progress in Oceanography 69, 181–217.
The circulation of the eastern tropical Pacific: a review.Crossref | GoogleScholarGoogle Scholar |

Kleiber, P., Hinton, M. G., and Uozumi, Y. (2003). Stock assessment of blue marlin (Makaira nigricans) in the Pacific using MUNTIFAN-CL. Marine and Freshwater Research 54, 349–360.
Stock assessment of blue marlin (Makaira nigricans) in the Pacific using MUNTIFAN-CL.Crossref | GoogleScholarGoogle Scholar |

Lalli, C. M., and Parsons, T. R. (2006). ‘Biological Oceanography, an Introduction’, 2nd edn. (Elsevier: Oxford, UK)

Mantua, N. J., and Hare, S. R. (2002). The Pacific decadal oscillation. Journal of Oceanography 58, 35–44.
The Pacific decadal oscillation.Crossref | GoogleScholarGoogle Scholar |

Marín-Enríquez, E. (2013). Variabilidad de las tasas de captura de marlin azul (Makaira nigricans) en la entrada del Golfo de California, y su relación con algunas variables oceanográficas. M.Sc. Thesis, Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, México.

Marín-Enríquez, E., Seoane, J., and Muhlia-Melo, A. (2018). Environmental modeling of ocurrence of dolphinfish (Coryphaena spp.) in the Pacific Ocean off Mexico reveals seasonality in abundance, hotspots and migration patterns. Fisheries Oceanography 27, 28–40.
Environmental modeling of ocurrence of dolphinfish (Coryphaena spp.) in the Pacific Ocean off Mexico reveals seasonality in abundance, hotspots and migration patterns.Crossref | GoogleScholarGoogle Scholar |

Martínez-Álvarez, G. E. (2006). ‘Caracterización de las Zonas de Interés Forestal. Características Físicas: Clima y Suelo.’ (Centro Nacional Agropecuario: La Salada, Colombia.)

Maunder, M. N., and Punt, A. E. (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries Research 70, 141–159.
Standardizing catch and effort data: a review of recent approaches.Crossref | GoogleScholarGoogle Scholar |

Molony, B. (2005). Summary of the biology, ecology and stock status of billfishes in the WCPFC, with a review of major variables influencing longline fishery performance. In ‘Working paper EB-WP-2, 1st Meeting of the Scientific Committee of the Western and Central Pacific Fisheries Commission’, 8–19 August, 2005 Noumea, New Caledonia.

Nakamura, I. (1985). Billfishes of the world: an annotated and illustrated catalogue of marlins, sailfishes, spearfishes and swordfishes known to date. FAO Species Catalogue 5, Synopsis 125(5), Food and Agriculture Organization of the United Nations Fisheries.

Okamoto, H., and Bayliff, W. H. (2003). A review of the Japanese longline fishery for tunas and billfishes in the eastern Pacific Ocean, 1993–1997. Bulletin, Inter-American Tropical Tuna Commission 22, 1–218.

Ortega-García, S., Klett-Traulsen, A., and Rodríguez-Sánchez, R. (2006). Some biological aspects of blue marlin (Makaira nigricans) in the recreational fishery at Cabo San Lucas, Baja California Sur, Mexico. Bulletin of Marine Science 79, 739–746.

Romero-Centeno, R., Zavala-Hidalgo, J., and Raga, G. B. (2007). Midsummer gap winds and low-level circulation over the eastern Tropical Pacific. Journal of Climate 20, 3768–3784.
Midsummer gap winds and low-level circulation over the eastern Tropical Pacific.Crossref | GoogleScholarGoogle Scholar |

Sakagawa, G. T. (1987). Effects of tropical tuna fisheries on non-target species. Technical Memorandum, number 69, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Center, La Jolla, CA, USA)

Scales, K. L., Elliot, L., Hazen, L., Jacox, M. G., Castruccio, F., Maxwell, S. M., Lewison, R. L., and Bograd, S. J. (2018). Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures. Proceedings of the National Academy of Sciences of the United States of America 115, 7362–7367.
Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures.Crossref | GoogleScholarGoogle Scholar | 29941592PubMed |

Seki, M. P., Lumpkin, R., and Flament, P. (2002). Hawaii cyclonic eddies and blue marlin catches: the case study of the 1995 Hawaiian International Billfish Tournament. Journal of Oceanography 58, 739–745.
Hawaii cyclonic eddies and blue marlin catches: the case study of the 1995 Hawaiian International Billfish Tournament.Crossref | GoogleScholarGoogle Scholar |

Shimose, T., Shono, H., Yokawa, K., Saito, H., and Tachihara, K. (2006). Food and feeding habits of blue marlin, Makaira nigricans, around Yonaguni Island, southwestern Japan. Bulletin of Marine Science 79, 761–765.

Southwick, R., Nelson, R., and Arean, J. A. (2010). The economic contribution of anglers to the Los Cabos economy. Interdisciplinary Environmental Review 11, 69–89.
The economic contribution of anglers to the Los Cabos economy.Crossref | GoogleScholarGoogle Scholar |

Su, N. J., Su, C. L., Punt, A. E., and Yeh, S. Z. (2008). Environmental and spatial effects on the distribution of blue marlin (Makaira nigricans) as inferred from data for longline fisheries in the Pacific Ocean. Fisheries Oceanography 17, 432–445.
Environmental and spatial effects on the distribution of blue marlin (Makaira nigricans) as inferred from data for longline fisheries in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Su, N. J., Su, C. L., Punt, A. E., Yeh, S. Z., and DiNardo, G. (2011). Modeling the impacts of environmental variation on the distribution of blue marlin, (Makaira nigricans), in the Pacific Ocean. ICES Journal of Marine Science 68, 1072–1080.
Modeling the impacts of environmental variation on the distribution of blue marlin, (Makaira nigricans), in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Talley, L. D., Fryer, G., and Lumpkin, R. (1998). Physical oceanography of the tropical Pacific. In ‘Geography of the Pacific Islands’. (Ed. M. Rapaport.) pp. 19–32. (Bess Press: Honolulu, HI, USA.)

Trasviña, A., Barton, E. D., Vélez, H. S., and Brown, J. (2003). Frontal subduction of a cool surface water mass in the Gulf of Tehuantepec, Mexico. Geofísica Internacional 42, 101–114.

Veiga, P., Xavier, R. A., Assis, C. A., and Erzini, K. (2011). Diet of the blue marlin, Makaira nigricans, off the south coast of Portugal. Marine Biology Research 7, 820–825.
Diet of the blue marlin, Makaira nigricans, off the south coast of Portugal.Crossref | GoogleScholarGoogle Scholar |

Ward, P., and Myers, R. A. (2005). Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Canadian Journal of Fisheries and Aquatic Sciences 62, 1130–1142.
Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear.Crossref | GoogleScholarGoogle Scholar |

Ward, P., Myers, R. A., and Blanchard, W. (2004). A fish lost at sea: the effect of soak time on pelagic longline catches. Fishery Bulletin 102, 179–195.

Wilson, C., and Adamec, D. (2001). Correlations between surface chlorophyll and sea surface height in the Tropical Pacific during 1997–1998 El Niño–Southern Oscillation event. Journal of Geophysical Research 106, 31,175–31,188.
Correlations between surface chlorophyll and sea surface height in the Tropical Pacific during 1997–1998 El Niño–Southern Oscillation event.Crossref | GoogleScholarGoogle Scholar |

Wood, S. (2006). ‘Generalized Additive Models. An Introduction with R.’ (CRC Press: Boca Raton, FL, USA.)

Wyrtki, K. (1981). An estimate of equatorial upwelling in the Pacific. American Meteorological Society 11, 1205–1214.
An estimate of equatorial upwelling in the Pacific.Crossref | GoogleScholarGoogle Scholar |

Yang, L., Quin, G., Zhao, N., Wang, C., and Song, G. (2012). Using a generalized additive model with autoregressive terms to study the effects of daily temperature on mortality. BMC Medical Research Methodology 12, 165.
Using a generalized additive model with autoregressive terms to study the effects of daily temperature on mortality.Crossref | GoogleScholarGoogle Scholar | 23110601PubMed |

Zhu, J., Xu, L., Dai, X., Chen, X., and Chen, Y. (2009). Vertical distribution of 17 pelagic fish species in the longline fisheries in the eastern Pacific Ocean. In ‘10th Stock Assessment Review Meeting’, 12–15 May 2009, La Jolla, CA, USA. pp 1–22. (Inter-American Tropical Tuna Commission: La Jolla, CA, USA.)

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R.’ (Springer-Verlag: New York, NY, USA.)