International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Remote sensing techniques to assess active fire characteristics and post-fire effects

Leigh B. Lentile* A D , Zachary A. Holden* A , Alistair M. S. Smith* A , Michael J. Falkowski A , Andrew T. Hudak B , Penelope Morgan A , Sarah A. Lewis B , Paul E. Gessler A and Nate C. Benson C
+ Author Affiliations
- Author Affiliations

A Department of Forest Resources, University of Idaho, Moscow, ID 83844-1133, USA.

B Rocky Mountain Research Station, USDA Forest Service, Moscow, ID 83843, USA.

C National Park Service, National Interagency Fire Center, 3833 S. Development Avenue, Boise, ID 83705-5354, USA.

D Corresponding author. Email: lentile@uidaho.edu

International Journal of Wildland Fire 15(3) 319-345 https://doi.org/10.1071/WF05097
Submitted: 16 October 2005  Accepted: 19 May 2006   Published: 5 September 2006

Abstract

Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous remote sensing products for fire management. The objective of the present paper is to provide a comprehensive review of current and potential remote sensing methods used to assess fire behavior and effects and ecological responses to fire. We clarify the terminology to facilitate development and interpretation of comprehensible and defensible remote sensing products, present the potential and limitations of a variety of approaches for remotely measuring active fires and their post-fire ecological effects, and discuss challenges and future directions of fire-related remote sensing research.

Additional keywords: burn severity; burned area; ecological change; fire atlas; fire intensity; fire perimeters; fire radiative power; fire severity; Normalized Burn Ratio; Normalized Difference Vegetation Index; radiative energy.


References


Agee JK (1993) ‘Fire ecology of Pacific Northwest forests.’ (Island Press: Washington, DC)

Albini FA (1976) ‘Estimating wildfire behavior and effects.’ USDA Forest Service, Intermountain Forestry and Range Experimental Station General Technical Report INT-GTR-30. (Ogden, UT)

Alexander ME (1982) Calculating and interpreting forest fire intensities. Canadian Journal of Botany  60, 349–357.


Al-Rawi KR, Casanova JL , Calle A (2001) Burned area mapping system and fire detection system, based on neural networks and NOAA-AVHRR imagery. International Journal of Remote Sensing  22, 2015–2032.
CrossRef |

Anderson JE , Romme WH (1991) Initial floristics in lodgepole pine (Pinus contorta) forests following the 1988 Yellowstone fires. International Journal of Wildland Fire  1, 119–124.
CrossRef |

Andreae MO , Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biochemical Cycles  15, 955–966.
CrossRef |

Andreae MO, Atlas E, Cachier H, Cofer WR, III, Harris GW, Helas G, Koppermann R, Lacaux JP, Ward DE (1996) Trace gas and aerosol emissions from savanna fires. In ‘Biomass burning and global change: Remote sensing, modelling and inventory development and biomass burning in Africa’. (Ed. JS Levine) pp. 278–295. (MIT Press: Cambridge, MA)

Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing  54, 199–214.
CrossRef |

Barbosa PM, Stroppiana D, Grégoire J-M , Pereira JMC (1999a) An assessment of vegetation fires in Africa (1981–1991): Burned area, burned biomass, and atmospheric emissions. Global Biochemical Cycles  13, 933–950.
CrossRef |

Barbosa PM, Grégoire J-M , Pereira JMC (1999b) An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sensing of Environment  69, 253–263.
CrossRef |

Barrett SW, Arno SF, Menakis JP (1997) ‘Fire episodes in the Inland Northwest (1540–1940) based on fire history data.’ USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-370. (Odgen, UT)

Beebe GS , Omi PN (1993) Wildland burning: the perception of risk. Journal of Forestry  91((9)), 19–24.


Bobbe T, Lachowski H, Maus P, Greer J , Dull C (2001) A primer on mapping vegetation using remote sensing. International Journal of Wildland Fire  10, 277–287.
CrossRef |

Bobbe T, Finco MV, Quayle B, Lannom K, Sohlberg R, Parsons A (2003) ‘Field measurements for the training and validation of burn severity maps from spaceborne remotely sensed imagery.’ USDI Joint Fire Science Program Final Project Report JFSP RFP 2001–2. (Boise, ID)

Borchers JG, Perry DA (1990) Effects of prescribed fire on soil organisms. In ‘Natural and prescribed fire in Pacific Northwest forests’. (Eds JD Walstad, SR Radosevich, DV Sandberg) pp. 143–158. (Oregon State University Press: Corvallis)

Bradshaw WG (1988) Fire protection in the urban/wildland interface: who plays what role? Fire Technology  24, 195–203.
CrossRef |

Brauer M (1999) Health impacts of biomass air. In ‘Health guidelines for vegetation fire events background papers’. (Eds K-T Goh, D Schwela, JG Goldammer, O Simpson) pp. 186–254. (WHO/UNEP/WMO: Singapore)

Brewer CK, Winne JC, Redmond RL, Opitz DW , Magrich MV (2005) Classifying and mapping wildfire severity: a comparison of methods. Photogrammetric Engineering and Remote Sensing  71, 1311–1320.


Butler BW, Cohen J, Latham DJ, Schuette RD, Sopko P, Shannon KS, Jimenez D , Bradshaw LS (2004) Measurements of radiant emissive power and temperatures in crown fires. Canadian Journal of Forest Research  34, 1577–1587.
CrossRef |

Byram GM (1959) Combustion of Forest Fuels. In ‘Forest fire: Control and use’. (Ed. KP Davis) pp. 61–89. (McGraw-Hill: New York)

Chappell C , Agee JK (1996) Fire severity and tree seedling establishment in Abies magnifica forests, southern Cascades, Oregon. Ecological Applications  6, 628–640.
CrossRef |

Choromanska U , DeLuca TH (2002) Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biology & Biochemistry  34, 263–271.
CrossRef |

Chuvieco E , Congalton RG (1988) Mapping and inventory of forest fires from digital processing of TM data. Geocarto International  4, 41–53.


Chuvieco E, Riano AI , Cocero D (2002) Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper Reflectance data: applications in fire danger assessment. International Journal of Remote Sensing  23, 2145–2162.
CrossRef |

Cochrane MA , Souza CM (1998) Linear mixture model classification of burned forests in the Eastern Amazon. International Journal of Remote Sensing  19, 3433–3440.
CrossRef |

Cocke AE, Fule PZ , Crouse JE (2005) Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire  14, 189–198.

CrossRef |

Cohen JD (2000) Preventing disaster: home ignitability in the wildland–urban interface. Journal of Forestry  98((3)), 15–21.


Cohen JD, Butler BW (1998) Modeling potential ignitions from flame radiation exposure with implications for wildland/urban interface fire management. In ‘Proceedings of the 13th conference on fire and forest meteorology’. 27–31 October, Lorne, Victoria, Australia. Fairfield, WA. pp. 81–86. (International Association of Wildland Fire: Montana City, MT)

Conard SG , Ivanova GA (1997) Wildfire in Russian boreal forests – potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environmental Pollution  10, 267–275.


Conard SG, Sukhinin AI, Stocks BJ, Cahoon DR, Davidenko EP , Ivanova GA (2002) Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Climatic Change  55, 197–211.
CrossRef |

Cotrell WH (1989) ‘The book of fire.’ (Mountain Press: Missoula, MT)

Covington WW , Moore MM (1994) South-western ponderosa pine forest structure: changes since Euro-American settlement. Journal of Forestry  92, 39–47.


Crutzen PJ , Andreae MO (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science  250, 1669..


DeBano LF (1981) ‘Water repellent soils: A state-of-the-art.’ USDA Forest Service Pacific Southwest Forest and Range Experiment Station General Technical Report PSW-46. (Berkeley, CA)

DeBano LF, Rice RN, Conrad CE (1979) ‘Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion and runoff.’ USDA Forest Service, Pacific Northwest Forest and Range Experimental Station Research Paper PSW-145. (Berkeley, CA)

DeBano LF, Neary DG, Ffolliott PF (1998) ‘Fire’s effects on ecosystems.’ (John Wiley and Sons: New York)

Dellasala DA, Williams JE, Williams CD , Franklin JF (2004) Beyond smoke and mirrors: a synthesis of fire policy and science. Conservation Biology  18, 976–986.
CrossRef |

Dennison PE (2006) Fire detection in imaging spectrometer data using atmospheric carbon dioxide absorption. International Journal of Remote Sensing, ,


Dennison PE, Charoensiri K, Roberts DA, Peterson SH , Green RO (2006) Wildfire temperature and land cover modeling using hyperspectral data. Remote Sensing of Environment  100, 212–222.
CrossRef |

Díaz-Delgado R, Lloret F , Pons X (2003) Influence of fire severity on plant regeneration through remote sensing imagery. International Journal of Remote Sensing  24, 1751–1763.
CrossRef |

Doerr SH, Shakesby RA , Walsh RPD (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Review  51, 33–65.
CrossRef |

Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF , Prince S (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment  81, 378–392.
CrossRef |

Drake NA, White K (1991) Linear mixture modelling of Landsat Thematic Mapper data for mapping the distribution and abundance of gypsum in the Tunisian Southern Atlas. In ‘Spatial data 2000: Proceedings of a joint conference of the Photogrammetric Society, the Remote Sensing Society, the American Society for Photogrammetry and Remote Sensing’, Christ Church, Oxford. (Ed. I Dowman) pp. 168–177. (Remote Sensing Society: Nottingham)

Drake NA, Mackin S , Settle JJ (1999) Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modelling of SWIR AVIRIS imagery. Remote Sensing of Environment  68, 12–25.
CrossRef |

Eberhardt KE , Woodard PM (1987) Distribution of residual vegetation associated with large fires in Alberta. Canadian Journal of Forest Research  17, 1207–1212.


Ekstrand S (1994) Assessment of forest damage with Landsat TM: Correction for varying forest stand characteristics. Remote Sensing of Environment  47, 291–302.
CrossRef |

Epting J, Verbyla D , Sorbel B (2005) Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment  96, 328–339.
CrossRef |

Eva H , Lambin EF (1998a) Burnt area mapping in Central Africa using ATSR data. International Journal of Remote Sensing  19, 3473–3497.
CrossRef |

Eva H , Lambin EF (1998b) Remote sensing of biomass burning in tropical regions: Sampling issues and multisensor approach. Remote Sensing of Environment  64, 292–315.
CrossRef |

Falkowski MJ, Gessler PE, Morgan P, Hudak AT , Smith AMS (2005) Evaluating ASTER satellite imagery and gradient modelling for mapping and characterizing wildland fire fuels. Forest Ecology and Management  217, 129–146.
CrossRef |

Falkowski MJ, Smith AMS, Hudak AT, Gessler PE, Vierling LA , Crookston NL (2006) Automated estimation of individual conifer tree height and crown diameter via two-dimensional spatial wavelet analysis of lidar data. Canadian Journal of Remote Sensing  32, 153–161.


Fernandez A, Illera P , Casanova JL (1997) Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data. Remote Sensing of Environment  60, 153–162.
CrossRef |

Fiorella M , Ripple WJ (1993) Analysis of conifer regeneration using Landsat Thematic Mapper data. Photogrammetric Engineering and Remote Sensing  59, 1383–1388.


Flannigan MD , Vonder Haar TH (1986) Forest fire monitoring using NOAA satellite AVHRR. Canadian Journal of Forest Research  16, 975–982.


Flasse SP , Ceccato P (1996) A contextual algorithm for AVHRR fire detection. International Journal of Remote Sensing  17, 419–424.


Fraser RH, Li Z , Cihlar J (2000) Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest. Remote Sensing of Environment  74, 362–376.
CrossRef |

Fraser RH, Hall RJ, Landry R, Landry T, Lynham T, Raymond D, Lee B , Li Z (2004) Validation and calibration of Canada-wide coarse-resolution satellite burned maps. Photogrammetric Engineering and Remote Sensing  70, 451–460.


French N, Goovaerts P , Kasischke ES (2004) Uncertainty in estimating carbon emissions from boreal forest fires. Journal of Geophysical Research  109, D14S08..
CrossRef |

Fuller DO , Fulk M (2001) Burned area in Kalimantan, Indonesia, mapped with NOAA-AVHRR and Landsat TM imagery. International Journal of Remote Sensing  22, 691–697.
CrossRef |

Garcia-Haro FJ, Gilabert MA , Melia J (2001) Monitoring fire-affected areas using Thematic Mapper data. International Journal of Remote Sensing  22, 533–549.
CrossRef |

Giglio L, Kendall JD , Justice CO (1999) Evaluation of global fire detection algorithms using simulated AVHRR infrared data. International Journal of Remote Sensing  20, 1947–1985.
CrossRef |

Giovannini G , Lucchesi S (1997) Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Science  162, 479–486.
CrossRef |

Graham RT (2003) ‘Hayman fire case study.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-114. (Fort Collins, CO)

Gresswell RE (1999) Fire and aquatic ecosystems in forested biomes of North America. Transactions of the American Fisheries Society  128, 193–221.
CrossRef |

Grissino-Meyer HD , Swetnam TW (2000) Century-scale climate forcing of fire regimes in the American South-west. The Holocene  10, 207–214.


Hall DK, Ormsby JP, Johnson L , Brown J (1980) Landsat digital analysis of the initial recovery of burned tundra at Kokolik River, Alaska. Remote Sensing of Environment  10, 263–272.
CrossRef |

Hann DB, Smith AMS , Powell AK (2003) Technical note: Classification of off-diagonal points in a co-occurrence matrix. International Journal of Remote Sensing  24, 1949–1956.
CrossRef |

Hardy CC (2005) Wildland fire hazard and risk: Problems, definitions, and context. Forest Ecology and Management  211, 73–82.
CrossRef |

Hardy CC, Menakis JP, Long DG, Brown JK, Brunnell DL (1998) Mapping historic fire regimes for the western United States: integrating remote sensing and biophysical data. In ‘Proceedings of the 7th biennial Forest Service remote sensing applications conference’, 6–9 April 1998, Nassau Bay, TX. pp. 288–300. (American Society for Photogrammetery and Remote Sensing: Bethesda, MD)

Hardy CC, Brunnell DL, Menakis JP, Schmidt KM, Long DG, Simmerman DG, Johnston CM (1999) ‘Coarse-scale spatial data for wildland fire and fuel management.’ USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Available at http://www.fs.fed.us/fire/fuelman [Verified 29 June 2006]

Hardy CC, Ottmar RD, Peterson JL, Core JE, Seamon P (2001) ‘Smoke management guide for prescribed and wildland fire.’ USDA National Wildfire Coordination Group Publication PMS 420-2. (Ogden, UT)

Hartford RA , Frandsen WH (1992) When it’s hot, it’s hot... or maybe it’s not! (Surface flaming may not portend soil heating). International Journal of Wildland Fire  2, 139–144.
CrossRef |

Hely C, Alleaume S, Swap RJ, Shugart HH , Justice CO (2003) SAFARI-2000 characterization of fuels, fire behavior, combustion completeness and emissions from experimental burns in infertile grass savannas in western Zambia. Journal of Arid Environments  54, 381–394.
CrossRef |

Henry MC , Hope AS (1998) Monitoring post-burn recovery of chaparral vegetation in southern California using multi-temporal satellite data. International Journal of Remote Sensing  19, 3097–3107.
CrossRef |

Henry MC , Yool SR (2002) Characterizing fire-related spatial patterns in the Arizona Sky Islands using Landsat TM data. Photogrammetric Engineering and Remote Sensing  68, 1011–1019.


Holden ZA, Smith AMS, Morgan P, Rollins MG , Gessler PE (2005) Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. International Journal of Remote Sensing  26, 4801–4808.
CrossRef |

Hudak AT , Brockett BH (2004) Mapping fire scars in a southern African savanna using Landsat imagery. International Journal of Remote Sensing  25, 3231–3243.
CrossRef |

Hudak AT, Lefsky MA, Cohen WB , Berterretche M (2002) Integration of lidar and Landsat ETM plus data for estimating and mapping forest canopy height. Remote Sensing of Environment  82, 397–416.

CrossRef |

Hudak AT, Robichaud P, Evans J, Clark J, Lannom K, Morgan P, Stone C (2004) Field validation of Burned Area Reflectance Classification (BARC) products for post-fire assessment. In ‘Proceedings of the tenth biennial forest service remote sensing applications conference’. (CD-ROM) (USDA Forest Service RSAC: Salt Lake City, UT)

Hudak AT, Morgan P, Bobbitt M, Lentile LB (2005) Characterizing clearcut harvest and severe fire disturbance patches in a forested landscape: A case study from Cooney Ridge, Montana. In ‘Forest disturbance and spatial patterns, GIS and remote sensing approaches’. (Eds M Wulder, S Francis) Chapter 8. (Taylor and Francis–CRC Press: London)

Hudak AT, Crookston NL, Evans JS, Falkowski MJ, Smith AMS, Gessler PE , Morgan P (2006) Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral data. Canadian Journal of Remote Sensing  32, 126–138.


Hungerford RD, Babbitt RE (1987) ‘Overstory removal and residue treatments affect soil surface, air, and soil temperatures: implications for seedling survival.’ USDA Forest Service, Intermountain Research Station Research Paper INT-377. (Ogden, UT)

Ice GG, Neary DG , Adams PW (2004) Effects of wildfire on soils and watershed processes. Journal of Forestry  102(6), 16–20.


Ichoku C , Kaufman YJ (2005) A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE transactions on Geoscience and Remote Sensing  43, 2636–2649.
CrossRef |

Ichoku C, Kaufman Y, Giglio L, Li Z, Fraser RH, Jin J-Z , Park WM (2003) Comparative analysis of daytime fire detection algorithms, using AVHRR data for the 1995 fire season in Canada: Perspective for MODIS. International Journal of Remote Sensing  24, 1669–1690.
CrossRef |

Isaev AS, Korovin GN, Bartalev SA, Ershow DV , Janetos A (2002) Using remote sensing to assess Russian forest fire carbon emissions. Climatic Change  55, 235–249.
CrossRef |

Jain T, Pilliod D , Graham R (2004) Tongue-tied. Wildfire  4, 22–26.


Jakubauskas ME, Lulla KP , Mausel PW (1990) Assessment of vegetation change in a fire-altered forest landscape. Photogrammetric Engineering and Remote Sensing  56, 371–377.


Justice CO, Malingreau J-P, Setzer AW (1993) Satellite remote sensing of fires: potential and limitations. In ‘fire in the environment.’ (Eds PJ Crutzen, JG Goldammer) pp. 77–88. (John Wiley: New York)

Justice CO, Kendall JD, Dowty PR , Scholes RJ (1996) Satellite remote sensing of fires during the SAFARI campaign using NOAA-AVHRR data. Journal of Geophysical Research  101, 23851–23863.
CrossRef |

Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F , Kaufman Y (2002) The MODIS fire products. Remote Sensing of Environment  83, 244–262.
CrossRef |

Kasischke ES , Bruhwiler LP (2003) Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. Journal of Geophysical Research  108, 8146..
CrossRef |

Kasischke KS , French NHF (1995) Locating and estimating the aerial extent of wildfires in Alaskan boreal forests using multiple-season AVHRR NDVI composite data. Remote Sensing of Environment  51, 263–275.
CrossRef |

Kaufman YJ, Tucker CJ , Fung I (1990) Remote sensing of biomass burning in the tropics. Journal of Geophysical Research  95, 9927–9939.


Kaufman YJ, Kleidman RG , King MD (1998) SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS. Journal of Geophysical Research  103, 31 955–31 968.
CrossRef |

Keane RE, Burgan RE , van Wagtendonk JW (2001) Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire  10, 301–319.
CrossRef |

Ketterings QM , Bigham JM (2000) Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia. Soil Science Society of America Journal  64, 1826–1833.


Key CH (2005) Remote sensing sensitivity to fire severity and fire recovery. In ‘Proceedings of the 5th international workshop on remote sensing and GIS applications to forest fire management: Fire effects assessment’. (Eds J De la Riva, F Perez-Cabello, E Chuvieco) pp. 29–39. (Universidad de Zaragoza: Spain)

Key CH, Benson NC (2002) Measuring and remote sensing of burn severity. US Geological Survey Wildland Fire Workshop, 31 October to 3 November 2000, Los Alamos, NM. USGS Open-File Report 02-11.

Key CH, Benson NC (2006) ‘Landscape assessment: sampling and analysis methods.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD. (Ogden, UT)

Kushla JD , Ripple WJ (1998) Assessing wildfire effects with Landsat Thematic Mapper data. International Journal of Remote Sensing  19, 2493–2507.
CrossRef |

Laes D, Maus P, Lewis S, Robichaud P, Kokaly R (2004) ‘Postfire burn-severity classification of the Hayman Fire, CO: Based on hyperspectral data-JFSP RFP 2001–2, Task 1. Project report: Integration of remote sensing.’ USDI Joint Fire Sciences Program Report RSAC-0068-RPT1. (Boise, ID)

Lamont BB, Witkowski ETF , Enright NJ (1993) Post-fire litter microsites safe for seeds, unsafe for seedlings. Ecology  74, 501–512.
CrossRef |

Landmann T (2003) Characterizing sub-pixel Landsat ETM+ fire severity on experimental fires in the Kruger National Park, South Africa. South African Journal of Science  99, 357–360.


Lefsky MA, Harding D, Cohen WB, Parker G , Shugart HH (1999) Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sensing of Environment  67, 83–98.

CrossRef |

Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA , Gower ST (2002) Lidar remote sensing of aboveground biomass in three biomes. Global Ecology and Biogeography  11, 393–399.
CrossRef |

Lefsky MA, Hudak AT, Cohen WB , Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sensing of Environment  95, 532–548.
CrossRef |

Lenihan HM, Daly C, Bachelet D , Neilson RP (1998) Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Science  72, 91–103.


Lentile LB (2004) Causal factors and consequences of mixed-severity fire in Black Hills ponderosa pine forests. PhD Thesis, Colorado State University.

Lentile LB, Smith FW , Shepperd WD (2005) Patch structure, fire-scar formation and tree regeneration in a large mixed-severity fire in the South Dakota Black Hills, USA. Canadian Journal of Forest Research  35, 2875–2885.
CrossRef |

Lewis SA, Wu JQ , Robichaud PR (2006) Assessing burn severity and comparing soil water repellency, Hayman Fire, Colorado. Hydrological Processes  20, 1–16.
CrossRef |

Li X, Kaufman YJ, Ichoku C, Fraser R, Trishcenko A, Giglio L, Kin J, Yu X (2001) A review of AVHRR-based active fire detection algorithms: principles, limitations, and recommendations. In ‘Global and regional vegetation fire monitoring from space: planning and coordinated international effort.’ (Eds F Ahern, JG Goldammer, CO Justice) pp. 199–225. (SPB Academic Publishing: The Hague)

Li Z, Nadon S , Chilar J (2000a) Satellite-based detection of Canadian boreal forest fires: development and application of the algorithm. International Journal of Remote Sensing  21, 3057–3069.
CrossRef |

Li Z, Nadon S, Chilar J , Stocks BJ (2000b) Satellite-based mapping of Canadian boreal forest fires: evaluation and comparison of algorithms. International Journal of Remote Sensing  21, 3071–3082.
CrossRef |

Lopez-Garcia MJ , Caselles V (1991) Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International  1, 31–37.


Loveland TR, Merchant JM, Othlen DO , Brown JF (1991) Development of a land-cover characteristics database for the conterminous US. Photogrammetric Engineering and Remote Sensing  57, 1453–1463.


Lutes DC, Keane RE, Caratti JF, Key CH, Benson NC, Sutherland S, Gangi LJ (2006) ‘FIREMON: The fire effects monitoring and inventory system.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD. (Fort Collins, CO)

Lyon LJ, Stickney PF (1976) Early vegetal succession following large northern Rocky Mountain wildfires. In ‘Proceedings of the Montana tall timbers fire ecology conference and fire and land management symposium’ No. 14. 8–10 October, Missoula, MT. pp. 355–375. (Tall Timbers Research Station: Tallahassee, FL)

McHugh C , Kolb TE (2003) Ponderosa pine mortality following fire in northern Arizona. International Journal of Wildland Fire  12, 7–22.
CrossRef |

McNaughton SJ, Stronach NRH , Georgiadis NJ (1998) Combustion in natural fires and global emissions budgets. Ecological Applications  8, 464–468.
CrossRef |

Means JE, Acker SA, Harding DJ, Blair JB, Lefsky MA, Cohen WB, Harmon ME , McKee WA (1999) Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the Western Cascades of Oregon. Remote Sensing of Environment  67, 298–308.
CrossRef |

Means JE, Acker SA, Fitt BJ, Renslow M, Emerson L , Hendrix C (2000) Predicting forest stand characteristics with airborne scanning lidar. Photogrammetric Engineering and Remote Sensing  66, 1367–1371.


Miller JD , Yool SR (2002) Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of Environment  82, 481–496.
CrossRef |

Milne AK (1986) The use of remote sensing in mapping and monitoring vegetational change associated with bushfire events in Eastern Australia. Geocarto International  1, 25–32.


Minshall G, Brock J, Andrews D , Robinson C (2001) Water quality, substratum and biotic responses of five central Idaho (USA) streams during the first year following the Mortar Creek fire. International Journal of Wildland Fire  10, 185–199.
CrossRef |

Molina MJ , Llinares JV (2001) Temperature–time curves at the soil surface in maquis summer fires. International Journal of Wildland Fire  10, 45–52.
CrossRef |

Morgan P, Bunting SC, Black AE, Merrill T, Barrett S (1996) ‘Fire regimes in the Interior Columbia River Basin: Past and Present.’ USDA Forest Service, Rocky Mountain Research Station Final Report for RJVA-INT-94913. (Fire Sciences Laboratory: Missoula, MT)

Morgan P, Hardy CC, Swetnam T, Rollins MG , Long LG (2001) Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. International Journal of Wildland Fire  10, 329–342.
CrossRef |

Mottram GN, Wooster MJ, Balster H, George C, Gerrard F, Beisley J (2005) The use of MODIS-derived Fire radiative power to characterise Siberian boreal forest fires. In ‘Proceedings of the 31st international symposium on remote sensing of environment’, 20–24 June 2005. (Saint Petersburg: Russian Federation)

National Wildfire Coordination Group (2005) ‘Glossary of wildland fire terminology.’ US National Wildfire Coordination Group Report PMS-205. (Ogden, UT)

Neary DG (2004) An overview of fire effects on soils. Southwest Hydrology  3, 18–19.


Neary DG, Klopatek CC, DeBano LF , Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management  122, 51–71.
CrossRef |

Nelson R, Krabill W , Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment  24, 247–267.
CrossRef |

Nielsen TT, Mbow C , Kane R (2002) A statistical methodology for burned area estimation using multitemporal AVHRR data. International Journal of Remote Sensing  23, 1181–1196.
CrossRef |

Ottmar RD, Sandberg DV (2003) Predicting forest floor consumption from wildland fire in boreal forests of Alaska – preliminary results. In ‘Proceedings of fire ecology 2000: The first national congress on fire ecology, prevention and management’. (Eds KEM Galley, RC Klinger, NG Sugihara) pp. 218–224. Miscellaneous Publication No. 13. (Tall timbers Research Station: Tallahassee, FL)

Parsons A (2003) Burned Area Emergency Rehabilitation (BAER) soil burn severity definitions and mapping guidelines. USDA Forest Service, Forest Service Regional BAER Coordinators 2003 Draft Report. Available at http://fire.r9.fws.gov/ifcc/esr/Remote%20Sensing/soil_burnsev_summary_guide042203.pdf [Verified 29 June 2006]

Parsons A, Orlemann A (2002) Burned Area Emergency Rehabilitation (BAER)/Emergency Stabilization and Rehabilitation (ESR). Burn Severity Definitions/Guidelines Draft Version 1.5. (Remote Sensing Application Center: Salt Lake City) Available at http://gis.esri.com/library/userconf/proc02/pap0431/p0431.htm [Verified 27 July 2006]

Patterson MW , Yool SR (1998) Mapping fire-induced vegetation mortality using Landsat Thematic Mapper data: A comparison of linear transformation techniques. Remote Sensing of Environment  65, 132–142.
CrossRef |

Pereira JMC (1999) A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Transactions on Geoscience and Remote Sensing  37, 217–226.
CrossRef |

Pereira JMC (2003) Remote sensing of burned areas in tropical savannas. International Journal of Wildland Fire  12, 259–270.
CrossRef |

Pereira JMC , Setzer AW (1996) Comparison of fire detection in savannas using AVHRR’s channel 3 and TM images. International Journal of Remote Sensing  17, 1925–1937.


Perez B , Moreno JM (1998) Methods for quantifying fire severity in shrubland-fires. Plant Ecology  139, 91–101.
CrossRef |

Picket ST, White PS (1985) Natural disturbance and patch dynamics: an introduction. In ‘The ecology of natural disturbance and patch dynamics’. (Eds ST Picket, PS White) pp. 3–13. (Academic Press: New York)

Poth M, Anderson IC, Miranda HS, Miranda AC , Riggan PJ (1995) The magnitude and persistence of soil NO, N2O, CH4, and CO2 fluxes from burned tropical savanna in Brazil. Global Biochemical Cycles  9, 503–513.
CrossRef |

Pozo D, Olmo FJ , Alados Arboledas L (1997) Fire detection and growth monitoring using a multitemporal technique on AVHRR mid-infrared and thermal channels. Remote Sensing of Environment  60, 111–120.
CrossRef |

Randriambelo T, Baldy S, Bessafi M, Petit M , Despinoy M (1998) An improved detection and characterization of active fires and smoke plumes in south-eastern Africa and Madagascar. International Journal of Remote Sensing  19, 2623–2638.
CrossRef |

Razafimpanilo H, Frouin R, Iacobillis SF , Somerville RCJ (1995) Methodology for estimating burned area from AVHRR reflectance data. Remote Sensing of Environment  54, 273–289.
CrossRef |

Reinhardt ED, Keane RE, Brown JK (1997) ‘First order fire effects model: FOFEM 4.0, user’s guide.’ USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-344. (Ogden, UT)

Reinhardt ED, Keane RE , Brown JK (2001) Modeling fire effects. International Journal of Wildland Fire  10, 373–380.
CrossRef |

Riaño D, Chuvieco E, Ustin S, Zomer R, Dennison P, Roberts D , Salas J (2002) Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains. Remote Sensing of Environment  79, 60–71.
CrossRef |

Riaño D, Meier E, Allgöwer B, Chuvieco E , Ustin SL (2003) Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment  86, 177–186.
CrossRef |

Richards JA, Jia X (1999) ‘Remote sensing digital image analysis: an introduction.’ (Springer-Verlag: New York)

Riggan PJ, Tissell RG, Lockwood RN, Brass JA, Pereira JAR, Miranda HS, Miranda AC, Campos T , Higgins R (2004) Remote measurement of energy and carbon flux from wildfires in Brazil. Ecological Applications  14, 855–872.


Roberts G, Wooster MJ, Perry GLW, Drake N, Rebelo L-M , Dipotso F (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: Part 2 – application to southern Africa using geostationary SEVIRI imagery. Journal of Geophysical Research  110, D24311..
CrossRef |

Robichaud PR, Beyers JL, Neary DG (2000) ‘Evaluating the effectiveness of postfire rehabilitation treatments.’ USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS- GTR-63. (Fort Collins, CO)

Robinson JM (1991) Fire from space: Global fire evaluation using infrared remote sensing. International Journal of Remote Sensing  12, 3–24.


Rollins M, Swetnam TW , Morgan P (2001) Evaluating a century of fire patterns in two Rocky Mountain wilderness areas using digital fire atlases. Canadian Journal of Forest Research  31, 2107–2123.
CrossRef |

Roy DP , Landmann T (2005) Characterizing the surface heterogeneity of fire effects using multi-temporal reflectance wavelength data. International Journal of Remote Sensing  26, 4197–4218.
CrossRef |

Roy DP, Giglio L, Kendall JD , Justice CO (1999) Multi-temporal active-fire-based burn scar detection algorithm. International Journal of Remote Sensing  20, 1031–1038.
CrossRef |

Roy DP, Jin Y, Lewis PE , Justice CO (2005) Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment  97, 137–162.
CrossRef |

Roy DP, Boschetti L , Trigg SN (2006) Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters  3, 112–116.
CrossRef |

Ruiz-Gallardo JR, Castaño S , Calera A (2004) Application of remote sensing and GIS to locate priority intervention areas after wildland fires in Mediterranean systems: a case study from south-eastern Spain. International Journal of Wildland Fire  13, 241–252.
CrossRef |

Russell-Smith J, Edwards AC , Cook GD (2003) Reliability of biomass burning estimates from savanna fires: Biomass burning in northern Australia during the 1999 biomass burning and lightning experiment B field campaign. Journal of Geophysical Research  108, 8405.
CrossRef |

Ryan KC, Noste NV (1985) Evaluating prescribed fires. In ‘Proceedings of the symposium and workshop on wilderness fire. 15–18 November 1983, Missoula, MT’. (Eds JE Lotan, BM Kilgore, WC Fischer, RW Mutch) pp. 230–238. USDA Forest Service, Intermountain Forest and Range Experiment Station General Technical Report INT-GTR-182. (Ogden, UT)

Ryan KC , Reinhardt ED (1988) Predicting postfire mortality of seven western conifers. Canadian Journal of Forest Research  18, 1291–1297.


Sa ACL, Pereira JMC, Vasconcelos MJP, Silva JMN, Ribeiro N , Awasse A (2003) Assessing the feasibility of sub-pixel burned area mapping in miombo woodlands of northern Mozambique using MODIS imagery. International Journal of Remote Sensing  24, 1783–1796.
CrossRef |

Salvador R, Valeriano J, Pons X , Díaz-Delgado R (2000) A semi-automatic methodology to detect fire scars in shrubs and evergreen forests with Landsat MSS time series. International Journal of Remote Sensing  21, 655–671.
CrossRef |

Scholes RJ, Kendall J , Justice CO (1996) The quantity of biomass burned in southern Africa. Journal of Geophysical Research  101, 23 667–23 676.
CrossRef |

Scott DF , Van Wyk DB (1990) The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. Journal of Hydrology  121, 239–256.
CrossRef |

Scott JH (1999) NEXUS: A system for assessing crown fire hazard. Fire Management Notes  59(2), 20–24.


Seielstad CA , Queen LP (2003) Using airborne laser altimetry to determine fuel models for estimating fire behavior. Journal of Forestry  101((4)), 10–15.


Seielstad CA, Riddering JP, Brown SR, Queen LP , Hao WM (2002) Testing the sensitivity of a MODIS-like daytime active fire detection model in Alaska using NOAA/AVHRR infrared data. Photogrammetric Engineering and Remote Sensing  68, 831–838.


Setzer AW , Pereira AC (1991) Amazon biomass burnings in 1987 and an estimate of their tropospheric emissions. Ambio  20, 19–22.


Silva JMN, Pereira JMC, Cabral AI, Sa ACL, Vasconcelos MJP, Mota B , Grégoire J-M (2003) An estimate of the area burned in southern Africa during the 2000 dry season using SPOT-VEGETATION satellite data. Journal of Geophysical Research  108, 8498.
CrossRef |

Smith AMS (2004) Determining nitrogen volatised within African savanna fires via ground-based remote sensing. PhD Thesis, University of London.

Smith AMS , Hudak AT (2005) Estimating combustion of large downed woody debris from residual white ash. International Journal of Wildland Fire  14, 245–248.
CrossRef |

Smith AMS , Wooster MJ (2005) Remote classification of head and backfire types from Modis fire radiative power observations. International Journal of Wildland Fire  14, 249–254.
CrossRef |

Smith AMS, Wooster MJ, Powell AK , Usher D (2002) Texture-based feature extraction: application to burn scar detection in Earth Observation satellite imagery. International Journal of Remote Sensing  23, 1733–1739.
CrossRef |

Smith AMS, Wooster MJ, Drake NA, Perry GLW , Dipotso FM (2005a) Fire in African savanna: Testing the impact of incomplete combustion of pyrogenic emission estimates. Ecological Applications  15, 1074–1082.


Smith AMS, Wooster MJ, Drake NA, Dipotso FM, Falkowski MJ , Hudak AT (2005b) Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savanna environments. Remote Sensing of Environment  97, 92–115.
CrossRef |

Spencer CN, Gabel KO , Hauer FR (2003) Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA. Forest Ecology and Management  178, 141–153.
CrossRef |

Spichtinger N, Wenig M, James P, Wagner T, Platt U , Stohl A (2001) Satellite detection of a continental-scale plume of nitrogen oxides from boreal forest fires. Geophysical Research Letters  28, 4579–4582.
CrossRef |

Stocks BJ, van Wilgen BW, Trollope WSW, McRae DJ, Mason JA, Weirich F , Potgeiter ALF (1996) Fuels and fire behavior on large-scale savanna fires in Kruger National Park, South Africa. Journal of Geophysical Research  101, 23 541–23 550.
CrossRef |

Stronach NRH , McNaughton SJ (1989) Grassland fire dynamics in the Serengeti ecosystem, and a potential method of retrospectively estimating fire energy. Journal of Applied Ecology  26, 1025–1033.

CrossRef |

Stroppiana D, Pinnock S, Pereira JMC , Grégoire J-M (2002) Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia. Remote Sensing of Environment  82, 21–37.
CrossRef |

Tian X, Mcrae DJ, Shu L, Wang M , Li H (2005) Satellite remote-sensing technologies used in forest fire management. Journal of Forestry Research  16, 73–78.


Trigg S , Flasse S (2000) Characterising the spectral-temporal response of burned savanna using in situ spectroradiometry and infrared thermometry. International Journal of Remote Sensing  21, 3161–3168.
CrossRef |

Trigg S , Flasse S (2001) An evaluation of different bi-spectral spaces for discriminating burned shrub-savanna. International Journal of Remote Sensing  22, 2641–2647.


Trollope WSW , Potgieter ALF (1985) Fire behavior in the Kruger National Park. Journal of the Grassland Society of South Africa  2, 17–22.


Trollope WSW, Trollope LA, Potgieter ALF , Zambatis N (1996) SAFARI-92 characterisation of biomass and fire behaviour in the small experimental burns in Kruger National Park. Journal of Geophysical Research  101, 23 531–23 540.
CrossRef |

Turner MG , Romme WH (1994) Landscape dynamics in crown fire ecosystems. Landscape Ecology  9, 59–77.
CrossRef |

Turner MG, Hargrove WW, Gardner RH , Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science  5, 731–742.
CrossRef |

Turner MG, Romme WH, Gardner RH , Hargrove WW (1997) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecological Monographs  67, 411–433.
CrossRef |

Turner MG, Romme WH , Garner RH (1999) Prefire heterogeneity, fire severity, and early post-fire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. International Journal of Wildland Fire  9, 21–36.
CrossRef |

Vafeidis AT , Drake NA (2005) A two-step method for estimating the extent of burnt areas with the use of coarse-resolution data. International Journal of Remote Sensing  26, 2441–2459.
CrossRef |

van Wagtendonk JW, Root RR , Key CH (2004) Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment  92, 397–408.
CrossRef |

Ventura JMP, Mendes-Lopes JMC , Ripado LMO (1998) Temperature–time curves in fire propagating in beds of pine needles. Proceedings of the Conference on Fire and Forest Meteorology  14, 699–711.


Viedma O, Melia J, Segarra D , Garcia HJ (1997) Modeling rates of ecosystem recovery after fires by using Landsat TM data. Remote Sensing of Environment  61, 383–398.
CrossRef |

Vieira NKM, Clements WH, Guevara LS , Jacobs BF (2004) Resistance and resilience of stream insect communities to repeated hydrologic disturbances after a wildfire. Freshwater Biology  49, 1243–1259.
CrossRef |

Wan S, Hui D , Luo Y (2001) Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecological Applications  11, 1349–1365.
CrossRef |

Wells CG, Campbell RE, DeBano LF, Lewis CE, Fredriksen RL, Franklin EC, Froelich RC, Dunn PH (1979) ‘Effects of fire on soil, a state-of-knowledge review.’ USDA Forest Service, Washington Office General Technical Report WO-7. (Washington, DC)

Wessman CA, Bateson CA , Benning TL (1997) Detecting fire and grazing patterns in tallgrass prairie using spectral mixture analysis. Ecological Applications  7, 493–511.
CrossRef |

Whelan RJ (1995) ‘The ecology of fire.’ (Cambridge University Press: Cambridge)

White JD, Ryan KC, Key CC , Running SW (1996) Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire  6, 125–136.
CrossRef |

Wilson RA, Hirsch SN, Madden FH, Losensky BJ (1971) ‘Airborne infrared forest fire detection system: final report.’ USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-93. (Ogden, UT)

Wondzell SM , King JG (2003) Postfire erosional processes in the Pacific Northwest and Rocky Mountain regions. Forest Ecology and Management  178, 75–87.
CrossRef |

Wooster MJ (2002) Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophysical Research Letters  29, 2027.
CrossRef |

Wooster MJ , Zhang YH (2004) Boreal forest fires burn less intensely in Russia than in North America. Geophysical Research Letters  31, L20505.
CrossRef |

Wooster MJ, Shukiv B , Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment  86, 83–107.
CrossRef |

Wooster MJ, Roberts G, Perry GLW , Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research  110, D24311.
CrossRef |

Wyant JG, Omi PN , Laven RD (1986) Fire-induced tree mortality in a Colorado ponderosa pine/Douglas-fir stand. Forest Science  32, 49–59.


Yokelson RJ, Griffith DWT , Ward DE (1996) Open-path FTIR studies of large-scale laboratory biomass fires. Journal of Geophysical Research  101, 21 067–21 080.
CrossRef |

Yokelson RJ, Bertschi IT, Christian TJ, Hobbs PV, Ward DE , Hao WM (2003) Trace gas measurements in nascent, aged, and cloud-processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR). Journal of Geophysical Research  108, 8478.
CrossRef |

Zhang Y-H, Wooster MJ, Tutabalina O , Perry GLW (2003) Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sensing of Environment  87, 1–15.
CrossRef |

Zhang Y-C, Rossow WB, Lacis AA, Oinas V , Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top-of-atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. Journal of Geophysical Research  109, D19105.
CrossRef |

Zhukov B, Lorenz E, Oertal D, Wooster MJ , Roberts G (2006) Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sensing of Environment  100, 29–51.
CrossRef |




* Leigh B. Lentile, Zachary A. Holden and Alistair M. S. Smith contributed equally to this paper.


Export Citation Cited By (298)

View Altmetrics