International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Analysis of the evolution of soil erosion classes using multitemporal Landsat imagery

J. Marquínez A , E. Wozniak A , S. Fernández A B and R. Martínez A
+ Author Affiliations
- Author Affiliations

A Natural Resources and Territorial Planning Institute (INDUROT), University of Oviedo, Mieres Campus, E-33600 Mieres, Spain.

B Corresponding author. Email: smdez@indurot.uniovi.es

International Journal of Wildland Fire 17(5) 549-558 https://doi.org/10.1071/WF06138
Submitted: 20 October 2006  Accepted: 3 April 2008   Published: 3 October 2008

Abstract

A cartographic method based on satellite images was completed in order to analyse the evolution of soil erosion in areas under humid climate conditions that experience frequent small forest fires. The method uses indicators, recognisable in the images, for the spatial and temporal analysis of the soil erosion status in burnt areas where the vegetation recovers quickly after fires. The continuity of the organic horizon, the surface stoniness and the vegetation cover degradation or regeneration were the indicators of the erosive soil class used in the multitemporal analysis of nine Landsat images. The study area is located in the western sector of the Cantabrian Range (NW Spain). The indicators selected were useful to show clearly the erosive status of the soils. Also, the use of multitemporal satellite image analysis seems to be a suitable method for studying soil erosion evolution in areas prone to forest fire. The application of the proposed method showed that in a study area of 48 857 ha, the soil cover was recovering in 7377 ha owing to the smaller frequency of forest fires, and degrading in 2326 ha.

Additional keywords: forest fires, soil erosion indicators.


References


Andrew OH, Prosser IP, Stevenson J, Scott A, Gallant J, Moran CJ (2001) Gully erosion mapping for the national land and water resources audit. CSIRO Land and Water, Technical Report 26/01. (Canberra)

Ben-Door E , Banin A (1994) Visible and near-infrared (0.4–1.1 μm) analysis of arid and semiarid soils. Remote Sensing of Environment  46, 246–267.


Bhatti AU, Mulla DJ , Frazier BE (1991) Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and Thematic Mapper images. Remote Sensing of Environment  37, 181–191.
CrossRef |

Bukata RP, Bruton JE , Jerome JH (1983) Use of chromaticity in remote measurements of water quality. Remote Sensing of Environment  13, 161–177.
CrossRef |

Calvo-Cases A, Boix-Fayos C , Imeson AC (2003) Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in south-east Spain Geomorphology  50, 269–291.
CrossRef |

Chappell A (1996) Modelling the spatial variation of processes in the redistribution of soil: digital terrain models and 137Cs in south-western Niger. Geomorphology  17, 249–261.
CrossRef |

Chuvieco E, Martín MPY , Palacios A (2002) Assessment of different spectral indices in the red–near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing  23, 5103–5110.
CrossRef |

Coehlo CO, Shakesby RA, Walsh RD, Terry J, Ferreira A (1990) Responses of surface and sub-surface soil water movement and soil erosion to forest fires in Eucalyptus globulus and Pinus pinaster forest, Agueda Basin, Portugal. In ‘Proceedings of International Conference on Forest Fire Research’, 19–22 November 1990, Coimbra, Portugal. (Ed. DX Viegas) (University of Coimbra: Coimbra, Portugal)

De Jong SM, Sommer S, Lacaze B, Scholte K, van der Meer F (1998) The DAIS La Peyne experiment: using airborne imaging spectrometry for land degradation survey and modelling. In ‘Proceedings of the 18th EARSeL Symposium on Operational Remote Sensing for Sustainable Development’, 11–14 May 1998, Enschede, the Netherlands. (A. A. Balkema: the Netherlands)

DeBano LF, Rice RM, Conrad CE (1979) Soil heating in chaparral fires: effects on soil particles, plant nutrients, erosion, and runoff. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Research Paper PSW-145. (Berkeley, CA)

Díaz-Fierros F, Rubio JL (1990) Metodologías de estudio de los procesos de erosión hídrica del suelo en España. Seminario de Estudos Galegos, Ediciones do Castro, Cuadernos da área de ciencias agrarias 12. (La Coruna, Spain)

Díaz-Fierros F, Benito E , Pérez R (1987) Evaluation of the USLE for the prediction of erosion in burnt forest areas in Galicia (NW Spain). Catena  14, 189–199.
CrossRef |

Dobson MC , Ulaby FT (1986) Preliminary evaluation of the SIR-B response to soil moisture, surface roughness, and crop canopy cover. IEEE Transactions on Geoscience and Remote Sensing  GE-24, 453–461.
CrossRef |

Doerr SH, Shakesby RS , Walsh RPD (1996) Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Agueda basin, Portugal. Catena  27, 25–47.
CrossRef |

Epting J, Verbyla DY , Sorbel B (2005) Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment  96, 328–339.
CrossRef |

Fernández EM (1996) El tiempo y el clima. In ‘Gran Atlas del Principado de Asturias’. (Ed. EM Fernandez-Álvarez) pp. 82–99. (Ediciones Nobel: Oviedo, Spain)

Fernández S, Marquínez J , Menéndez Duarte RA (2005) A susceptibility model for post-wildfire soil erosion in a temperate oceanic mountain area: Cantabrian Range of Spain. Catena  61, 256–272.
CrossRef |

Flanagan DC, Nearing MA (1995) USDA-water erosion prediction project: hillslope profile and watershed model documentation. USDA-ARS, National Soil Erosion Research Laboratory, NSREL Report 10. (West Lafayette, IN)

Frazier BE , Yaan C (1989) Remote sensing of soils in the Eastern Palouse region with Landsat Thematic Mapper. Remote Sensing of Environment  28, 317–325.
CrossRef |

Giovannini G (1994) The effect of fire on soil quality. In ‘Soil Erosion and Degradation as a Consequence of Forest Fires’. (Eds M Sala, JL Rubio) pp. 15–27. (Geoforma Ediciones: Logroño, Spain)

He Q, Walling DE, Wallbrink PJ (2002) Alternative methods and radionuclides for use in soil-erosion and sedimentation investigations. In ‘Handbook for the Assessment of Soil Erosion and Sedimentation using Environmental Radioactivity’. (Ed. F Zapata) pp. 185–216. (Kluwer Academic Publishers: Dordrecht, the Netherlands)

Hill J , Schütt B (2000) Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems. Remote Sensing of Environment  74, 557–569.
CrossRef |

Lambin EF , Ehrlich D (1996) The surface temperature–vegetation index space for land-cover and land-cover change analysis. International Journal of Remote Sensing  17, 463–487.
CrossRef |

Le Bissonnais Y (1990) Soil characteristics and aggregate stability. In ‘Soil Erosion, Conservation, and Rehabilitation’. (Ed. M Agassi) pp. 41–60. (Marcel Dekker: New York)

Le Bissonnais Y (1996) Aggregate stability and assessment of soil crustability and erodibility: theory and methodology. European Journal of Soil Science  47, 425–437.
CrossRef |

Marquínez J, Menendez R, Jiménez-Alfaro B, Fernandez S, García P, Lastra J (2003) Los incendios forestales. In ‘Riesgos Naturales en Asturias’. (Ed. J Marquinez) pp. 87–118. (KRK Ediciones: Oviedo, Spain)

Martínez-Casasnovas JA (2003) A spatial information technology approach for the mapping and quantification of gully erosion. Catena  50, 293–308.
CrossRef |

Martínez-Ríos JJ , Monger HC (2002) Soil classification in arid lands with Thematic Mapper data. Terra  20, 89–100.


Méndez Moreno A, Recondo González C, Rosario González Moradas M, García Manteca P , Sáez García E (2001) Un método sencillo para la corrección topográfica de imágenes de satélite. Aplicación a imágenes Landsat-TM de los Concejos de Mieres y San Martín del Rey Aurelio (Asturias) para obtener mapas de vegetación. Mapping  64, 24–34.


Menendez R, Fernández S, Soto J (2007) Rates of soil loss in burnt areas: quantitative data from 137Cs measurements. In ‘Proceedings of the International Meeting of Fire Effects on Soil Properties’, 31 January–3 February 2007, Barcelona, Spain. (Eds X Úbeda, L Outeiro) (University of Barcelona: Barcelona, Spain)

Merritt WS, Letcher RA , Jakeman AJ (2003) A review of erosion and sediment transport models. Environmental Modelling & Software  18, 761–799.
CrossRef |

Metternicht GI , Fermont A (1998) Estimating erosion surface features by linear mixture modeling. Remote Sensing of Environment  64, 254–265.
CrossRef |

Metternicht GI , Zinck JA (1998) Evaluating the information contents of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features. Photogrammetric Engineering and Remote Sensing  53, 143–153.
CrossRef |

Pickup G , Marks A (2000) Identifying large-scale erosion and deposition processes from airborne gamma radiometrics and digital elevation models in a weathered landscape. Earth Surface Processes and Landforms  25, 535–557.
CrossRef | CAS |

Recondo C, Wozniak E , Perez-Morandeira CS (2002) Cartografía de zonas quemadas en Asturias durante el periodo 1991–2001 a partir de imágenes Lamdsat-TM. Revista de Teledetección  18, 47–55.


Richie JC , McHenry JR (1978) Fallout cesium-137 in cultivated and non-cultivated north central United States watersheds. Journal of Environmental Quality  7, 40–44.


Sancho C, Benito G, Gutierrez M (1991) Agujas de erosión y perfiladores micro-topográficos. In ‘Cuadernos Tecnicos de la SEG N° 2’. p. 28. (Geoforma Ediciones: Logroño, Spain)

Sano EE, Huete AR, Troufleau D, Moran MS , Vidal A (1998) Relation between ERS-1 synthetic aperture radar data and measurements of surface roughness and moisture content of rocky soils in a semiarid rangeland. Water Resources Research  34, 1491–1498.
CrossRef |

Schumm SA (1956) The evolution of drainage systems and slopes in badlands of Perth Amboy, New Jersey. Bulletin of the Geological Society of America  67, 597–646.
CrossRef |

Scott DF , Van Wyk DB (1990) The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. Jounal of Hydrology  121, 239–256.
CrossRef |

Shrimali SS, Aggarwal SP , Samra JS (2001) Prioritizing erosion-prone areas in hills using remote sensing and GIS – a case study of the Sukhna Lake catchment, northern India. International Journal of Applied Earth Observation and Geoinformation  3, 54–60.
CrossRef |

Stella WT , Hoffer RM (1998) Responses of spectral indices to variations in vegetation cover and soil background. Photogrammetric Engineering and Remote Sensing  64, 915–921.


Thomas AW, Welch R , Jordan TR (1986) Quantifying concentrated-flow erosion on cropland with aerial photogrammetry. Journal of Soil and Water Conservation  41((4)), 249–252.


Ubeda X , Sala M (1996) Cambios en la física del suelo e incremento de la escorrentía y la erosión tras un incendio forestal. Actas IV Reunión de Geomorfología, S.E.G.  1, 559–572.


Vélez R (2000) Combustibles forestales: combustibilidad. In ‘La Defensa contra Incendios Forestales – Fundamentos y Experiencias’. (Ed. R Vélez) pp. 120–150. (McGraw-Hill: Madrid)

Vigiak O, Okoba BO, Sterk G , Groenenberg S (2005) Modelling catchment-scale erosion patterns in the East African Highlands. Earth Surface Processes and Landforms  30, 183–196.
CrossRef |

Wicherek SP , Bernard C (1995) Assessment of soil movements in watershed from Cs-137 data and conventional measurements (example: the Parisian Basin). Catena  25, 141–151.
CrossRef | CAS |

Wishmeier WH, Smith DH (1978) Predicting rainfall erosion losses – a guide to conservation planning. USDA Agriculture Handbook No. 537. (Washington, DC)



Export Citation Cited By (1)