Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

The economic impact of fire management on timber production in the boreal forest region of Quebec, Canada

Baburam Rijal A D , Frédéric Raulier A , David L. Martell B and Sylvie Gauthier C
+ Author Affiliations
- Author Affiliations

A Centre d’Étude de la Forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, 2405 rue de la Terrasse, Québec, QC, G1V 0A6, Canada.

B Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, ON, M5S 3B3, Canada.

C Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec, QC, G1V 4C7, Canada.

D Corresponding author. Email: baburam.rijal.1@ulaval.ca

International Journal of Wildland Fire 27(12) 831-844 https://doi.org/10.1071/WF18041
Submitted: 22 March 2018  Accepted: 10 October 2018   Published: 23 November 2018

Abstract

Wildfire is an important component of the dynamics of boreal-forest ecosystems, but it can also contribute to the loss of forest resources, especially when fires escape initial attack and become large. Annual fire management costs in the province of Quebec are substantial (annual average of C$69 million for 1994–2014). The main objective of this study was to evaluate the financial impact of fire management on forest resources in Quebec. Our study includes cost–benefit analyses of nine fire management presuppression expenditure scenarios using forest and fire data for three commercially managed forest management units in the province of Quebec that experience varying mean annual burn rates (0.06–0.56% year−1). The reduction in the burn rate attributed to fire management increased the revenue from the sale of primary-processed wood product and reduced fire suppression expenditure. The combined effects of reduced suppression expenditure and increased revenue from value-added timber harvest and wood processing with a lower fire risk compensated for increased fire presuppression expenditure.

Additional keywords: cost–benefit analysis, fire suppression expenditure, presuppression expenditure, forest management, timber supply analysis.


References

Acuna MA, Palma CD, Cui W, Martell DL, Weintraub A (2010) Integrated spatial fire and forest management planning. Canadian Journal of Forest Research 40, 2370–2383.
Integrated spatial fire and forest management planning.Crossref | GoogleScholarGoogle Scholar |

Adresses Québec (2015) AQ réseau. Available at http://adressesquebec.gouv.qc.ca/aqreseau.asp [Verified 16 May 2017]

Armstrong GW (2004) Sustainability of timber supply considering the risk of wildfire. Forest Science 50, 626–639.

Ashe BS, McAneney J (2012) The real cost of fire in Australia. (Macquarie University) Available at https://www.riskfrontiers.com/pdf/GA2012-FIRE28-Ashe&McAneney.pdf [Verified 16 May 2017]

Bank of Canada (2015) Inflation calculator. (Bank of Canada) Available at http://www.bankofcanada.ca/rates/related/inflation-calculator/?__utma=1.1835431595.1440610285.1440610285.1440610285.1&__utmb=1.1.10.1440610285&__utmc=1&__utmx=- [Verified 16 May 2017]

Belleau A, Bergeron Y, Leduc A, Gauthier S, Fall A (2007) Using spatially explicit simulations to explore size distribution and spacing of regenerating areas produced by wildfires: recommendations for designing harvest agglomerations for the Canadian boreal forest. Forestry Chronicle 83, 72–83.
Using spatially explicit simulations to explore size distribution and spacing of regenerating areas produced by wildfires: recommendations for designing harvest agglomerations for the Canadian boreal forest.Crossref | GoogleScholarGoogle Scholar |

Bellinger MD, Kaiser HF, Harrison HA (1983) Economic efficiency of fire management on non-federal forest and rangelands. Journal of Forestry 81, 373–378.

Bergeron Y, Cyr D, Drever CR, Flannigan M, Gauthier S, Kneeshaw D, Lauzon A, Leduc A, Le Goff H, Lesieur D, Logan K (2006) Past, current, and future fire frequencies in Quebec’s commercial forests: implications for the cumulative effects of harvesting and fire on age-class structure and natural disturbance-based management. Canadian Journal of Forest Research 36, 2737–2744.
Past, current, and future fire frequencies in Quebec’s commercial forests: implications for the cumulative effects of harvesting and fire on age-class structure and natural disturbance-based management.Crossref | GoogleScholarGoogle Scholar |

Bernier PY, Gauthier S, Jean PO, Manka F, Boulanger Y, Beaudoin A, Guindon L (2016) Mapping Local Effects of Forest Properties on Fire Risk across Canada. Forests 7, 157–167.
Mapping Local Effects of Forest Properties on Fire Risk across Canada.Crossref | GoogleScholarGoogle Scholar |

Bouchard M, Pothier D, Gauthier S (2008) Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Canadian Journal of Forest Research 38, 1621–1633.
Fire return intervals and tree species succession in the North Shore region of eastern Quebec.Crossref | GoogleScholarGoogle Scholar |

Boychuk D, Martell DL (1996) A multistage stochastic programming model for sustainable forest-level timber supply under risk of fire. Forest Science 42, 10–26.

Bureau du forestier en chef (2013) Manuel de détermination des possibilités forestières 2013–2018. (Gouvernement du Québec: Roberval, QC, Canada) Available at http://forestierenchef.gouv.qc.ca/wp-content/uploads/2013/01/MDPF_VF.pdf [Verified 16 May 2017]

Canadian Pacific Consulting Services (2013) Transportation costs and competitiveness of eastern Canada lumber in GCC markets. Available at http://canadawood.org/pdf/report_transportation_costs_competitiveness.pdf [Verified 16 May 2017]

Chabot M, Blanchet P, Drapeau P, Fortin F, Gauthier S, Imbeau L, Lacasse G, Lemaire G, Nappi A, Quenneville R, Thiffault E (2009) Le feu en milieu forestier. In ‘Manuel de Foresterie’. (Ed. PU Laval) pp. 1037–1090. (Ordre des ingénieurs forestiers du Québec: Québec, QC, Canada)

Cumming SG (2005) Effective fire suppression in boreal forests. Canadian Journal of Forest Research 35, 772–786.
Effective fire suppression in boreal forests.Crossref | GoogleScholarGoogle Scholar |

D’Amours S, Rönnqvist M, Weintraub A (2008) Using operational research for supply chain planning in the forest products industry. INFOR 46, 265–281.
Using operational research for supply chain planning in the forest products industry.Crossref | GoogleScholarGoogle Scholar |

Del Degan Massé (2010) Impact des coûts d’operation sur la valeur de la redevance et les coûts d’approvisionnment en bois. Prepared for the Ministère des Resources naturelles et Faune Québec, Québec. Available at http://www.mffp.gouv.qc.ca/publications/forets/gestion/ impact-couts-operation.pdf [Verified 15 March 2017]

Del Degan Massé (2012) Structure de l’industrie de la récuperation du bois provenant de la construction, la rénovation et la démolition au Québe. (Recyc-Québec, QC, Canada) Available at http://www.recyc-quebec.gouv.qc.ca/Upload/Rapport-final-bois.pdf [Verified 15 March 2017]

Donovan GH, Rideout DB (2003) A reformulation of the cost plus net value change (C plus NVC) model of wildfire economics. Forest Science 49, 318–323.

Garcia O (1984) FOLPI, a forestry-oriented linear programming interpreter. In ‘Proceedings IUFRO Symposium on Forest Management Planning and Managerial Economics’, Tokyo. (Eds H. Nagumo et al.) University of Tokyo, pp. 293–305. (Tokyo, Japan)

Gauthier S, Chabot M, Drolet B, Plante C, Coupal J, Boivin C, Juneau B, Lefebvre F, Ménard B, Villeneuve R, Gagnon L (2005) Groupe de travail sur les objectifs opérationnels de la SOPFEU: Rapport d’analyse. Société de Protection Des Forêts Contre Le Feu (SOPFEAU). (Québec, QC, Canada)

González-Cabán A (2013) The economic dimension of wildland fires. In ‘Vegetation Fires and Global Change – Challenges for Concerted International Action’. A white paper directed to the United Nations and international organizations, pp. 229-237. (Kassel Publishing House)

Gunn E (2007) Models for strategic forest management. In ‘Handbook of Operations Research in Natural Resources’. (Eds AJ Weintraub, JP Miranda, C Romero, T Bjørndal, R Epstein) pp. 317–342. (Springer: New York, NY)

Gunn E, Rai AK (1987) Modelling and decomposition for planning long-term forest harvesting in an integrated industry structure. Canadian Journal of Forest Research 17, 1507–1518.
Modelling and decomposition for planning long-term forest harvesting in an integrated industry structure.Crossref | GoogleScholarGoogle Scholar |

Hirsch K, Kafka V, Tymstra C, McAlpine R, Hawkes B, Stegehuis H, Quintilio S, Peck K (2001) Fire-smart forest management: a pragmatic approach to sustainable forest management in fire-dominated ecosystems. Forestry Chronicle 77, 357–363.
Fire-smart forest management: a pragmatic approach to sustainable forest management in fire-dominated ecosystems.Crossref | GoogleScholarGoogle Scholar |

Johnson EA (1996) ’Fire and Vegetation Dynamics: Studies from the North American Boreal Forest.’ (Cambridge University Press: New York, NY)

Johnson EA, Miyanishi K, Bridge SRJ (2001) Wildfire regime in the boreal forest and the idea of suppression and fuel buildup. Conservation Biology 15, 1554–1557.
Wildfire regime in the boreal forest and the idea of suppression and fuel buildup.Crossref | GoogleScholarGoogle Scholar |

Johnston LM, Flannigan MD (2018) Mapping Canadian wildland fire interface areas. International Journal of Wildland Fire 27, 1–14.
Mapping Canadian wildland fire interface areas.Crossref | GoogleScholarGoogle Scholar |

Laurent AB, Vallerant S, Bouchard M, Carle MA, D’Amours S (2013) Outil d’aide à la décision intégrant les critères environnementaux pour le transport des produits du bois. In ‘Proceedings of the 10ème Congrès International de Génie Industriel’, 12–14 June 2013. (La Rochelle, France)

Liu Z, Wimberly MC (2015) Climatic and landscape influences on fire regimes from 1984 to 2010 in the western United States. PLoS One 10, e0140839
Climatic and landscape influences on fire regimes from 1984 to 2010 in the western United States.Crossref | GoogleScholarGoogle Scholar |

Liu C, Zhang SY (2005) Models for predicting product recovery using selected tree characteristics of black spruce. Canadian Journal of Forest Research 35, 930–937.
Models for predicting product recovery using selected tree characteristics of black spruce.Crossref | GoogleScholarGoogle Scholar |

Liu C, Ruel J-C, Groot A, Zhang SY (2009) Model development for lumber volume recovery of natural balsam fir trees in Quebec, Canada. Forestry Chronicle 85, 870–877.
Model development for lumber volume recovery of natural balsam fir trees in Quebec, Canada.Crossref | GoogleScholarGoogle Scholar |

Martell DL (1994) The impact of fire on timber supply in Ontario. Forestry Chronicle 70, 164–173.
The impact of fire on timber supply in Ontario.Crossref | GoogleScholarGoogle Scholar |

Martell DL (2001) Forest fire management. In ‘Forest Fires: Behavior and Ecological Effects’. (Eds EA Johnson, K Miyanishi) pp. 527–583. (Academic Press, San Diego, CA)

Martell DL (2015) A review of recent forest and wildland fire management decision support systems research. Current Forestry Reports 1, 128–137.
A review of recent forest and wildland fire management decision support systems research.Crossref | GoogleScholarGoogle Scholar |

Martell DL, Boychuk D (1997) Levels of fire protection for sustainable forestry in Ontario: a discussion paper. Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre Techincal Report TR-43. (Sault Sainte Marie, ON, Canada)

Martell DL, Sun H (2008) The impact of fire suppression, vegetation, and weather on the area burned by lightning-caused forest fires in Ontario. Canadian Journal of Forest Research 38, 1547–1563.
The impact of fire suppression, vegetation, and weather on the area burned by lightning-caused forest fires in Ontario.Crossref | GoogleScholarGoogle Scholar |

Mavsar R, Cabán AG, Varela E (2013) The state of development of fire management decision support systems in America and Europe. Forest Policy and Economics 29, 45–55.
The state of development of fire management decision support systems in America and Europe.Crossref | GoogleScholarGoogle Scholar |

McQuillan AG (1986) The declining even flow effect – non sequitur of National Forest planning. Forest Science 32, 960–972.

Merrill DF, Alexander ME (Eds) (1987) ‘Glossary of forest fire management terms.’ (Canadian Committee on Forest Fire Management, National Research Council of Canada: Ottawa, ON, Canada)

Milne M, Helena C, Stephen D, Geoffrey JC (2014) Evaluating benefits and costs of wildland fires: critical review and future applications. Environnemental Hazards 13, 114–132.
Evaluating benefits and costs of wildland fires: critical review and future applications.Crossref | GoogleScholarGoogle Scholar |

Ministère des Ressources Naturelles et de la Faune du Québec (2000) Limite nordique des forêts attribuables. Rapport final du comité. Québec. Available at http://www.mffp.gouv.qc.ca/publications/forets/consultation/partie1.pdf [Verified 19 November 2015]

Ministère des Ressources Naturelles et de la Faune du Québec (2009) Répertoire des usines de transformation primaire du bois. Available at http://www.mrn.gouv.qc.ca/forets/entreprises/entreprises-transformation-publications-industrie-table.jsp [Verified 5 December 2009]

Nappi A, Déry S, Bujold F, Chabot M, Dumont M-C, Duval J, Drapeau P, Gauthier S, Brais S, Peltier J, Bergeron I (2011) La récolte dans les forêts brûlées - Enjeux et orientations pour un aménagement écosystémique. (Direction de l’environnement et de la protection des forêts, Ministère des Ressources naturelles et de la Faune: Québec, QC, Canada) Available at http://www.mffp.gouv.qc.ca/publications/forets/amenagement/forets-brulees-enjeux.pdf [Verified 17 July 2017]

Natural Resources Canada (2015) Forest fires. Available at http://www.nrcan.gc.ca/forests/ fire-insects-disturbances/fire/13143 [Verified 10 December 2015]

O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 41, 673–690.
A caution regarding rules of thumb for variance inflation factors.Crossref | GoogleScholarGoogle Scholar |

Paradis G, LeBel L, D’Amours S, Bouchard M (2013) On the risk of systematic drift under incoherent hierarchical forest management planning. Canadian Journal of Forest Research 43, 480–492.
On the risk of systematic drift under incoherent hierarchical forest management planning.Crossref | GoogleScholarGoogle Scholar |

Pasturel T (2013) ‘Étude de la rentabilité de différentes stratégies d’aménagement forestier en forêt boréale du nord de l’Abitibi’. MEnvSc Thesis, Université du Québec à Montréal, Montréal, QC, Canada.

Patriquin MN, Lantz VA, Stedman RC, White WA (2008) Working together: a reciprocal wood flow arrangement to mitigate the economic impacts of natural disturbance. Forestry 81, 227–242.
Working together: a reciprocal wood flow arrangement to mitigate the economic impacts of natural disturbance.Crossref | GoogleScholarGoogle Scholar |

Pedernera P, Julio G (1999) Improving the economic efficiency of combatting forest fires in Chile: the KITRAL system. In ‘Proceeding of the Symposium on Fire Economics, Planning, and Policy: Bottom Lines, 5–9 April 1999; San Diego, CA, USA. (Eds A González-Cabán, PN Omi) USDA Forest Service, Pacific Southwest Research Station, General Technical Report PSW-GTR-173, pp. 149–155. (Albnay, CA, USA)

Pothier D, Auger I (2011) NATURA-2009: un modèle de prévision de la croissance à l’échelle du peuplement pour les forêts du Québec. Ministère des Ressources Naturelles et de la Faune du Québec, Mémoire de recherche forestière 163. (Québec, QC, Canada)

Raulier F, Le Goff H, Gauthier S, Rapanoela R, Bergeron Y (2013) Introducing two indicators for fire risk consideration in the management of boreal forests. Ecological Indicators 24, 451–461.
Introducing two indicators for fire risk consideration in the management of boreal forests.Crossref | GoogleScholarGoogle Scholar |

Raulier F, Dhital N, Racine P, Tittler R, Fall A (2014) Increasing resilience of timber supply: how a variable buffer stock of timber can efficiently reduce exposure to shortfalls caused by wildfires. Forest Policy and Economics 46, 47–55.
Increasing resilience of timber supply: how a variable buffer stock of timber can efficiently reduce exposure to shortfalls caused by wildfires.Crossref | GoogleScholarGoogle Scholar |

Reed WJ, Errico D (1986) Optimal harvest scheduling at the forest level in the presence of the risk of fire. Canadian Journal of Forest Research 16, 266–278.
Optimal harvest scheduling at the forest level in the presence of the risk of fire.Crossref | GoogleScholarGoogle Scholar |

Rijal B, Raulier F, Martell DL (2018) A value-added forest management policy reduces the impact of fire on timber production in Canadian boreal forests. Forest Policy and Economics 97, 21–32.
A value-added forest management policy reduces the impact of fire on timber production in Canadian boreal forests.Crossref | GoogleScholarGoogle Scholar |

Robitaille A, Saucier J-P (1998) ‘Paysages Régionaux du Québec Méridional.’ (Les Publications du Québec: Quebec, QC, Canada)

Rodríguez y Silva F, González-Cabán A (2010) ‘SINAMI’: a tool for the economic valuation of forest fire management programs in Mediterranean ecosystems. International Journal of Wildland Fire 19, 927–936.
‘SINAMI’: a tool for the economic valuation of forest fire management programs in Mediterranean ecosystems.Crossref | GoogleScholarGoogle Scholar |

Savage DW, Martell DL, Wotton BM (2010) Evaluation of two risk mitigation strategies for dealing with fire-related uncertainty in timber supply modelling. Canadian Journal of Forest Research 40, 1136–1154.
Evaluation of two risk mitigation strategies for dealing with fire-related uncertainty in timber supply modelling.Crossref | GoogleScholarGoogle Scholar |

Simard AJ (1976) Wildland fire management: the economics of policy alternatives. Canadian Forestry Service, Forest Fire Research Institute, Technical Report Fo64-15. (Ottawa, ON, Canada)

Sparhawk WN (1925) The use of liability ratings in planning forest fire protection. Journal of Agricultural Research 30, 693–762.

Stocks BJ, Martell DL (2016) Forest fire management expenditures in Canada: 1970–2013. Forestry Chronicle 92, 298–306.
Forest fire management expenditures in Canada: 1970–2013.Crossref | GoogleScholarGoogle Scholar |

Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR (2002) Large forest fires in Canada, 1959–1997. Journal of Geophysical Research 107, 5–12.

Thompson MP, Silva FR, Calkin DE, Hand MS (2017) A review of challenges to determining and demonstrating efficiency of large fire management. International Journal of Wildland Fire 26, 562–573.
A review of challenges to determining and demonstrating efficiency of large fire management.Crossref | GoogleScholarGoogle Scholar |

Van Wagner CE (1978) Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research 8, 220–227.
Age-class distribution and the forest fire cycle.Crossref | GoogleScholarGoogle Scholar |

Van Wagner CE (1983) Simulating the effect of forest fire on long-term annual timber supply. Canadian Journal of Forest Research 13, 451–457.
Simulating the effect of forest fire on long-term annual timber supply.Crossref | GoogleScholarGoogle Scholar |

Venables WN, Ripley BD (2013) ‘Modern Applied Statistics with S-PLUS’. (Springer Science & Business Media: New York, NY, USA)

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bulletin 1, 80–83.
Individual comparisons by ranking methods.Crossref | GoogleScholarGoogle Scholar |

Williams J (2013) Exploring the onset of high-impact mega-fires through a forest land management prism. Forest Ecology and Management 294, 4–10.
Exploring the onset of high-impact mega-fires through a forest land management prism.Crossref | GoogleScholarGoogle Scholar |

Wotton BM, Martell DL (2005) A lightning fire occurrence model for Ontario. Canadian Journal of Forest Research 35, 1389–1401.
A lightning fire occurrence model for Ontario.Crossref | GoogleScholarGoogle Scholar |

Zhang S-Y, Tong Q-J (2005) Modeling lumber recovery in relation to selected tree characteristics in jack pine using sawing simulator Optitek. Annals of Forest Science 62, 219–228.
Modeling lumber recovery in relation to selected tree characteristics in jack pine using sawing simulator Optitek.Crossref | GoogleScholarGoogle Scholar |

Zybach B, Dubrasich M, Brenner G, Marker J (2009) US wildfire cost-plus-loss economics project: the ‘One-pager’ checklist. In ‘Advances in Fire Practices’, Fall. (Wildland Fire Lessons Learned Center) Available at https://www.wildfirelessons.net/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=9f94b4ed-d5f2-45b8-b198-5677d430e3ae [Verified 21 March 2018]