Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals

Improving salt tolerance of wheat and barley: future prospects

T. D. Colmer A B E , R. Munns A C and T. J. Flowers B D
+ Author Affiliations
- Author Affiliations

A CRC for Plant-based Management of Dryland Salinity.

B School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

D School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex, BN1 9QG, UK.

E Corresponding author. Email:

Australian Journal of Experimental Agriculture 45(11) 1425-1443
Submitted: 2 August 2004  Accepted: 8 March 2005   Published: 16 December 2005


Cropping on saline land is restricted by the low tolerance of crops to salinity and waterlogging. Prospects for improving salt tolerance in wheat and barley include the use of: (i) intra-specific variation, (ii) variation for salt tolerance in the progenitors of these cereals, (iii) wide-hybridisation with halophytic ‘wild’ relatives (an option for wheat, but not barley), and (iv) transgenic techniques. In this review, key traits contributing to salt tolerance, and sources of variation for these within the Triticeae, are identified and recommendations for use of these traits in screening for salt tolerance are summarised. The potential of the approaches to deliver substantial improvements in salt tolerance is discussed, and the importance of adverse interactions between waterlogging and salinity are emphasised. The potential to develop new crops from the diverse halophytic flora is also considered.

Additional keywords: breeding, chloride, genetics, halophyte, Hordeum, potassium, salinity, sodium, transgenic, Triticum, waterlogging, ‘wild’ relatives.


TDC and RM thank the Grains Research and Development Corporation for funding research in their laboratories on salt tolerance in wheat. TJF thanks the University of Western Australia for providing support as ‘Visiting Professor’ in the School of Plant Biology. Research on salt tolerant crops in the CRC for Plant-based Management of Dryland Salinity is in collaboration with Alaina Garthwaite, Rafiq Islam, and Roland von Bothmer.


Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology 131, 1748–1755.
CrossRef | PubMed |

Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil 231, 243–254.
CrossRef |

Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP (2001) The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant Physiology 126, 1061–1071.
CrossRef | PubMed |

Amtmann A, Sanders D (1999) Mechanisms of Na+ uptake by plant cells. Advances in Botanical Research 29, 76–112.

ANRA (2004) Australian natural resources atlas. Available at [verified 11 November 2005]

Armstrong W (1979) Aeration in higher plants. Advances in Botanical Research 7, 225–332.

Aronson JA (1989) ‘HALOPH: a data base of salt tolerant plants of the world.’ (Office of Arid Land Studies, University of Arizona: Tucson)

Asad A (2002) Growing Atriplex and Maireana species in saline sodic and waterlogged soils. Communications in Soil Science and Plant Analysis 33, 973–989.
CrossRef |

Ashour NI, Serag MS, Abd El-Haleem AK, Mekki BB (1997) Forage production from three grass species under saline irrigation in Egypt. Journal of Arid Environments 37, 299–307.
CrossRef |

Ashraf M, Khanum A (1997) Relationship between ion accumulation and growth in two spring wheat lines differing in salt tolerance at different growth stages. Journal Agronomy and Crop Science 178, 39–51.

Ashraf M, McNeilly T (1988) Variability in salt tolerance of nine spring wheat cultivars. Journal Agronomy and Crop Science 160, 14–21.

Ashraf M, O’Leary JW (1997) Ion distribution in leaves of salt-tolerant and salt-sensitive lines of spring wheat under salt stress. Acta Botanica Neerlandica 46, 207–217.

Barrett-Lennard EG (1986) Wheat growth on saline waterlogged soils.  Department of Agriculture, Western Australia Journal of Agriculture 27, 118–119.

Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant and Soil 253, 35–54.
CrossRef |

Barrett-Lennard EG, van Ratingen P, Mathie MH (1999) The developing pattern of damage in wheat (Triticum aestivum L.) due to the combined stresses of salinity and hypoxia: experiments under controlled conditions suggest a methodology for plant selection. Australian Journal of Agricultural Research 50, 129–136.
CrossRef |

Berna A, Bernier F (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Molecular Biology 39, 539–549.
CrossRef | PubMed |

Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochimica et Biophysica Acta 1465, 140–151.
PubMed |

Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology 14, 89–97.
CrossRef |

Boursier P, Läuchli A (1989) Mechanisms of chloride partitioning in the leaves of salt-stressed Sorghum bicolor L. Physiologia Plantarum 77, 537–544.

Boursier P, Lynch J, Läuchli A, Epstein E (1987) Chloride partitioning in leaves of salt-stressed sorghum, maize, wheat and barley. Australian Journal of Plant Physiology 14, 463–473.

Britto DT, Ruth TJ, Lapi S, Kronzucker HJ (2004) Cellular and whole-plant chloride dynamics in barley: insights into chloride-nitrogen interactions and salinity responses. Planta 218, 615–622.
CrossRef | PubMed |

Brown JJ, Glenn EP (1999) Reuse of highly saline aquaculture effluent to irrigate a potential forage halophyte, Suaeda esteroa. Aquacultural Engineering 20, 91–111.
CrossRef |

Cane S (1989) Australian aboriginal seed grinding and its archaeological record: a case study from Western Desert. In ‘Foraging and farming — the evolution of plant exploitation’. (Eds DR Harris, GC Hillman) pp. 100–119. (Unwin Hyman: London)

Charpentier A (1992) Production of disomic addition lines and partial amphiploids of Thinopyrum junceum on wheat. C.R. Academie des Sciences, Paris 315, 551–557.

Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell and Environment 26, 17–36.
CrossRef |

Colmer TD, Epstein E, Dvořák J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat × Lophopyrum elongatum (Host) A. Love amphiploid. Plant Physiology 108, 1715–1724.
PubMed |

Daniells IG, Holland JF, Young RR, Alston CL, Bernardi AL (2001) Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Australian Journal of Experimental Agriculture 41, 211–217.
CrossRef |

Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annual Review of Plant Biology 53, 67–107.
CrossRef | PubMed |

Dewey DR (1960) Salt tolerance of twenty-five strains of Agropyron. Agronomy Journal 52, 631–635.

Drew MC, Läuchli A (1985) Oxygen-dependent exclusion of sodium ions from shoots by roots of Zea mays (cv. Pioneer 3906) in relation to salinity damage. Plant Physiology 79, 171–176.

Dubcovsky J, Santa Maria G, Epstein E, Luo M-C, Dvořák J (1996) Mapping of the K/Na discrimination locus Kna1 in wheat. Theoretical and Applied Genetics 92, 448–454.
CrossRef |

Dvořák J, Sosulski FW (1974) Effects of additions and substitutions of Agropyron elongatum chromosomes on quantitative characters in wheat. Canadian Journal of Genetics and Cytology 16, 627–637.

Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? Journal of Experimental Botany 51, 9–17.
CrossRef | PubMed |

Ellis RP, Forster BP, Waugh R, Bonar N, Handley LL, Robinson D, Gordon D, Powell W (1997) Mapping physiological traits in barley. New Phytologist 137, 149–157.
CrossRef |

Epstein E, Norlyn JD (1977) Sea water-based crop production: a feasibility study. Science 197, 249–251.

Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelley DB, Cunningham GA, Wrona AF (1980) Saline culture of crops: a genetic approach. Science 210, 399–404.

Flowers TJ (2004) Improving crop salt tolerance. Journal of Experimental Botany 55, 307–319.
CrossRef | PubMed |

Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quarterly Review of Biology 61, 313–337.
CrossRef |

Flowers T, Troke P, Yeo A (1977) The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology 28, 89–121.
CrossRef |

Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology 22, 875–884.

Foolad MR, Lin GY (1997) Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato. Plant Breeding 116, 363–367.

Forster BP (1994) Monographs on Theoretical and Applied Genetics. Plant Breeding 21, 61–82.

Forster BP, Pakniyat H, Macaulay M, Matheson W, Phillips MS, Thomas WTB, Powell W (1994) Variation in the leaf sodium content of the Hordeum vulgare (barley) cultivar Maythorpe and its derived mutant cv. Golden Promise. Heredity 73, 249–253.

Francois LE, Maas EV (1994) Crop response and management on salt-affected soils. In ‘Handbook of plant and crop stress’. (Ed. M Pessarakli) pp. 149–181. (Marcel Dekker: New York).

Gallagher JL (1985) Halophytic crops for cultivation at seawater salinity. Plant and Soil 89, 323–336.
CrossRef |

Galvez AF, Gulick PJ, Dvořák J (1993) Characterization of the early stages of genetic salt-stress responses in salt-tolerant Lophopyrum elongatum, salt-sensitive wheat, and their amphiploid. Plant Physiology 103, 257–265.
PubMed |

Garcia A, Rizzo CA, Ud-Din J, Bartos SL, Senadhira D, Flowers TJ, Yeo AR (1997) Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium:potassium selectivity differs between rice and wheat. Plant, Cell and Environment 20, 1167–1174.
CrossRef |

Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences USA 99, 15898–15903.
CrossRef |

Garthwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Functional Plant Biology 30, 875–889.
CrossRef |

Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl– into the shoots. Journal of Experimental Botany 56, 2365–2378.
CrossRef | PubMed |

Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVPI H+-pump. Proceedings of the National Academy of Sciences USA 98, 11444–11449.
CrossRef |

Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology 30, 1–47.
CrossRef |

Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences 18, 227–255.

Glenn EP, O’Leary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia-bigelovii Torr — an oilseed halophyte for seawater irrigation. Science 251, 1065–1067.

Glenn E, Tanner R, Miyamoto S, Fitzsimmons K, Boyer J (1998) Water use, productivity and forage quality of the halophyte Atriplex nummularia grown on saline waste water in a desert environment. Journal of Arid Environments 38, 45–62.
CrossRef |

Gorham J (1990) Salt tolerance in the Triticeae: K+/Na+ discrimination in synthetic hexaploid wheats. Journal of Experimental Botany 41, 623–627.

Gorham J (1993) Genetics and physiology of enhanced K/Na discrimination. In ‘Genetic aspects of plant mineral nutrition’. (Eds PJ Randall, E Delhaize, RA Richards, R Munns) pp. 151–158. (Kluwer Academic Publishers: Dordrecht)

Gorham J (1994) Salt tolerance in the Triticeae: K/Na discrimination in some perennial wheatgrasses and their amphiploids with wheat. Journal of Experimental Botany 45, 441–447.

Gorham J, Bristol A, Young EM, Wyn Jones RG (1990) The presence of the enhanced K/Na discrimination trait in the diploid Triticum species. Theoretical and Applied Genetics 82, 729–736.

Gorham J, Budrewicz E, McDonnell E, Wyn Jones RG (1986a) Salt tolerance in the Triticeae: salinity-induced changes in the leaf solute composition of some perennial Triticeae. Journal of Experimental Botany 37, 1114–1128.

Gorham J, Forster BP, Budrewicz E, Wyn Jones RG, Miller TE, Law CN (1986b) Salt tolerance in the Triticeae: solute accumulation and distribution in an amphiploid derived from Triticum aestivum cv. Chinese Spring and Thinopyrum bessarabicum. Journal of Experimental Botany 37, 1435–1449.

Gorham J, McDonnell E, Budrewicz E, Wyn Jones RG (1985) Salt tolerance in the Triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. Journal of Experimental Botany 36, 1021–1031.

Gorham J, Wyn Jones RG, Bristol A (1991) Partial characterization of the trait for enhanced K+-Na+ discrimination in the D genome of wheat. Planta 180, 590–597.

Greenway H (1962a) Plant response to saline substrates. I. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatment. Australian Journal of Biological Sciences 15, 16–38.

Greenway H (1962b) Plant response to saline substrates. II. Chloride, sodium, and potassium uptake and translocation in young plants of Hordeum vulgare during and after a short sodium chloride treatment. Australian Journal of Biological Sciences 15, 39–57.

Greenway H (1965) Plant response to saline substrates. IV. Chloride uptake by Hordeum vulgare as affected by inhibitors, transpiration, and nutrients in the medium. Australian Journal of Biological Sciences 18, 249–268.

Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annual Review of Plant Physiology 31, 149–190.
CrossRef |

Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research 76, 91–101.
CrossRef |

Grumet R, Hanson AD (1986) Genetic evidence for an osmoregulatory function of glycinebetaine accumulation in barley. Australian Journal of Plant Physiology 13, 353–364.

Hall JL, Harvey DMR, Flowers TJ (1978) Evidence for the cytoplasmic localization of betaine in leaf cells of Suaeda maritima. Planta 140, 59–62.
CrossRef |

Hamilton G, Bakker D, Houlebrook D, Spann C (2000) Raised beds prevent waterlogging and increase productivity. Department of Agriculture, Western Australia Journal of Agriculture 41, 3–9.

Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment 21, 535–553.
CrossRef |

Hollington PA, Akhtar J, Aragues R, Hussain Z, Mahar AR, Quarrie SA, Qureshi RH, Royo A, Saqib M (2002) Recent advances in the development of salinity and waterlogging tolerant bread wheats. In ‘Prospects for saline agriculture’. (Eds R Ahmad, KA Malik) pp. 83–99. (Kluwer Academic Publishers: Dordrecht)

Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiology 122, 747–756.
CrossRef | PubMed |

Hurkman WJ, Tanaka CK (1996) Effect of salt stress on germin gene expression in barley roots. Plant Physiology 110, 971–977.
PubMed |

Isla R, Aragüés R, Royo A (1998) Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crops Research 58, 97–107.
CrossRef |

Islam AKMR, Shepherd KW (1990) Incorporation of barley chromosomes into wheat. In ‘Biotechnology in agriculture and forestry. Vol. 13. Wheat’. (Ed. YPS Bajaj) pp. 128–151. (Springer-Verlag: Berlin)

Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1, 274–287.

Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolism of herbaceous plants. In ‘Flooding and plant growth’. (Ed. TT Kozlowski) pp. 47–128. (Academic Press: New York)

Jefferies RL (1980) The role of organic solutes in osmoregulation in halophytic higher plants. In ‘Genetic engineering of osmoregulation’. (Eds DW Rains, RC Valentine, A Hollaender) pp. 135–154. (Plenum Press: New York)

Jiang J, Liu D (1987) New Hordeum–Triticum hybrids. Cereal Research Communications 15, 95–100.

John CD, Limpinuntana V, Greenway H (1977) Interaction of salinity and anaerobiosis in barley and rice. Journal of Experimental Botany 28, 133–141.

Johnson RC (1991) Salinity resistance, water relations, and salt content of crested and tall wheatgrass accessions. Crop Science 31, 730–734.

Khan MA, Gul B, Weber DJ (2002) Improving seed germination of Salicorania rubra (Chenopodiaceae) under saline conditions using germination-regulating chemicals. Western North American Naturalist 62, 101–105.

King IP, Forster BP, Law CC, Cant KA, Orford SE, Gorham J, Reader S, Miller TE (1997a) Introgression of salt-tolerance genes from Thinopyrum bessarabicum into wheat. New Phytologist 137, 75–81.
CrossRef |

King IP, Law CN, Cant KA, Orford SE, Reader SM, Miller TE (1997b) Tritipyrum, a potential new salt-tolerant cereal. Plant Breeding 116, 127–132.

Kingsbury R, Epstein E (1984) Selection for salt-resistant spring wheat. Crop Science 24, 310–315.

Latz P (1995) ‘Bushfires and bushtucker: aboriginal plant use in central Australia.’ (IAD Press: Alice Springs)

Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. The Plant Journal 32, 139–149.
CrossRef | PubMed |

Leake J, Barrett-Lennard E, Sargeant M, Yensen N, Prefumo J (2002) NyPa Distichlis cultivars: rehabilitation of highly saline areas for forage turf and grain. Publication No. 02/154. Rural Industries Research and Development Corporation, Canberra.

Li ZY, Chen SY (2000) Isolation and characterization of a salt- and drought-inducible gene for S-adenosylmethionine decarboxylase from wheat (Triticum aestivum L.). Journal of Plant Physiology 156, 386–393.

Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Functional Plant Biology 31, 1105–1114.
CrossRef |

Maas EV (1986) Salt tolerance of plants. Applied Agricultural Research 1, 12–25.

Maas EV, Hoffman GJ (1977) Crop salt tolerance – current assessment. Journal of the Irrigation and Drainage Division American Society of Civil Engineering 103, 115–134.

Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany 84, 123–133.
CrossRef |

Mahar AR, Hollington PA, Virk DS, Witcombe JR (2003) Selection for early heading and salt-tolerance in bread wheat. Cereal Research Communications 31, 81–88.

Malcolm CV (1969) Use of halophytes for forage production on saline wastelands. Journal of the Australian Institute of Agricultural Science 35, 38–49.

Malcolm CV (1974) Forage production from shrubs on saline land. Journal of Agriculture of Western Australia 15, 68–73.

Malcolm CV (1980) Wheatbelt salinity: a review of the saltland problem in south Western Australia. Report 52, Department of Agriculture, Western Australia.

Malcolm CV (1983) Seeding shrub pastures on saltland. Farmnote 43/83, Western Australian Department of Agriculture.

Malcolm CV (1986) Production from salt-affected soils. Reclamation and Revegetation Research 5, 343–361.

Malcolm CV, Allen RJ (1981) The Mallen niche seeder for plant establishment on difficult sites. Australian Rangeland Journal 3, 106–109.
CrossRef |

Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94, 263–272.
CrossRef |

Mano Y, Takeda K (1998) Genetic resources of salt tolerance in wild Hordeum species. Euphytica 103, 137–141.
CrossRef |

Martin A, Alvarez JB, Martin LM, Barro F, Ballesteros J (1999) The development of tritordeum: a novel cereal for food processing. Journal of Cereal Science 30, 85–95.
CrossRef |

Martin PK, Ambrose MJ, Koebner RMD (1994) A wheat germplasm survey uncovers salt tolerance in genotypes not exposed to salt stress in the course of their selection. In ‘Aspects of applied biology 39. The impact of genetic variation on sustainable agriculture’. pp. 215–222. (The Association of Applied Biologists: Wellesbourne)

Mäser P, Gierth M, Schroeder JI (2002) Molecular mechanisms of potassium and sodium uptake in plants. Plant and Soil 247, 43–54.
CrossRef |

Matoh T, Watanabe J, Takahashi E (1987) Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. Plant Physiology 84, 173–177.

McDonald MP, Galwey NW, Colmer TD (2001b) Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant, Cell and Environment 24, 585–596.
CrossRef |

McDonald MP, Galwey NW, Ellneskog-Staam P, Colmer TD (2001a) Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytologist 151, 369–380.
CrossRef |

McGuire PE, Dvořák J (1981) High salt-tolerance potential in wheatgrasses. Crop Science 21, 702–705.

Mckell CM (1994) ‘Salinity tolerance in Atriplex species — fodder shrubs of arid lands.’ (Marcel Dekker: New York)

McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiology 120, 945–949.
CrossRef | PubMed |

Munns R (1985) Na+, K+ and Cl– in xylem sap flowing to shoots of NaCl-treated barley. Journal of Experimental Botany 36, 1032–1042.

Munns R (2005) The impact of salinity stress. [verified 11 November 2005]

Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil 253, 201–218.
CrossRef |

Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Australian Journal of Plant Physiology 22, 561–569.

Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Australian Journal of Agricultural Research 51, 69–74.
CrossRef |

Muntzing A (1979) ‘Triticale, results and problems. Supplement 10 to Journal of Plant Breeding.’ (Eds W Horn, G Robbelen) pp. 1–100. (Verlag-Paul Parey: Berlin)

Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Letters 296, 187–189.
CrossRef | PubMed |

Nemoto Y, Sasakuma T (2000) Specific expression of glucose-6-phosphate dehydrogenase (G6PDH) gene by salt stress in wheat (Triticum aestivum L.). Plant Science 158, 53–60.
CrossRef | PubMed |

Nevo E, Krugman T, Beiles A (1993) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breeding 110, 338–341.

Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Current Opinion in Plant Biology 2, 128–134.
CrossRef | PubMed |

Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD (1998) The endogenous choline supply limits glycinebetaine synthesis in transgenic tobacco expressing choline monooxygenase. The Plant Journal 16, 487–496.
CrossRef | PubMed |

O’Leary JW (1984) The role of halophytes in irrigated agriculture. In ‘Salinity tolerance in plants’. (Eds RC Staples, GH Toenniessen) pp. 285–300. (John Wiley and Sons: New York)

O’Leary JW, Glenn EP, Watson MC (1985) Agricultural production of halophytes irrigated with seawater. Plant and Soil 89, 311–321.
CrossRef |

Omielan JA, Epstein E, Dvořák J (1991) Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome 34, 961–974.

Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Molecular Biology 48, 551–573.
CrossRef | PubMed |

Pakniyat H, Handley LL, Thomas WTB, Connolly T, Macaulay M, Caligari PDS, Forster BP (1997b) Comparison of shoot dry weight, Na+ content and δ13C values of ari-e and other semi-dwarf barley mutants under salt-stress. Euphytica 94, 7–14.
CrossRef |

Pakniyat H, Powell W, Baird E, Handley LL, Robinson D, Scrimgeour CM, Nevo E, Hackett CA, Caligari PDS, Forster BP (1997c) AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40, 332–341.
CrossRef |

Pakniyat H, Thomas WTB, Caligari PDS, Forster BP (1997a) Comparison of salt tolerance of GPert and non-GPert barleys. Plant Breeding 116, 189–191.

Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynthesis Research 44, 243–252.
CrossRef |

Pienaar RdeV (1990) Wheat x Thinopyrum hybrids. In ‘Biotechnology in agriculture and forestry. Vol 13. Wheat’. (Ed. YPS Bajaj) pp. 167–217. (Springer-Verlag: Berlin)

Ponnamperuma FN (1984) Effects of flooding on soils. In ‘Flooding and plant growth’. (Ed. TT Kozlowski) pp. 9–45. (Academic Press: New York)

Rawson HM, Long MJ, Munns R (1988b) Growth and development in NaCl-treated plants. I. Leaf Na+ and Cl– concentrations do not determine gas exchange of leaf blades in barley. Australian Journal of Plant Physiology 15, 519–527.

Rawson HM, Richards RA, Munns R (1988a) An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. Australian Journal of Agricultural Research 39, 759–772.
CrossRef |

Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Australian Journal of Experimental Agriculture 42, 351–361.
CrossRef |

Rengasamy P, Chittleborough D, Helyar K (2003) Root zone constraints and plant-based solutions for dryland salinity. Plant and Soil 257, 249–260.
CrossRef |

Rhodes D, Hanson AD (1993) Quarternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 44, 357–384.
CrossRef |

Robinson SP, Jones GP (1986) Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Australian Journal of Plant Physiology 13, 659–668.

Rogers ME, Craig AD, Munns RE, Colmer TD, Nichols PGH , et al. (2005) The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Australian Journal of Experimental Agriculture 45, 301–329.
CrossRef |

Roundy BA (1983) Response of basin wildrye and tall wheatgrass seedlings to salination. Agronomy Journal 75, 67–71.

Royo A, Aragüés R (1999) Salinity-yield response functions of barley genotypes assessed with a triple line source sprinkler system. Plant and Soil 209, 9–20.
CrossRef |

Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270, 1660–1663.
PubMed |

Saneoka H, Nagasaka C, Hahn DT, Yang W-J, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiology 107, 631–638.
PubMed |

Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. The Plant Cell 9, 2281–2289.
CrossRef | PubMed |

Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnology Letters 24, 721–725.
CrossRef |

Sayed HI (1985) Diversity of salt tolerance in a germplasm collection of wheat (Triticum spp.). Theoretical and Applied Genetics 69, 651–657.
CrossRef |

Schachtman DP, Lagudah ES, Munns R (1992) The expression of salt tolerance from Triticum tauschii in hexaploid wheat. Theoretical and Applied Genetics 84, 714–719.
CrossRef |

Schachtman DP, Munns R, Whitecross MI (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Science 31, 992–997.

Semikhodskii AG, Quarrie SA, Snape JW (1997) Mapping quantitative trait loci for salinity responses in wheat. In ‘Drought and plant production. Proceedings Lepenski Vir Meeting, Serbia, September 1996’. pp. 83–92. (Agricultural Research Centre: Serbia)

Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant and Soil 253, 1–34.
CrossRef |

Shannon MC (1978) Testing salt tolerance variability among tall wheatgrass lines. Agronomy Journal 70, 719–722.

Shen W, Gomez-Cadenas A, Routly EL, Ho T-HD, Simmonds JA, Gulick PJ (2001) The salt stress-inducible protein kinase gene, Esi47, from the salt-tolerant wheatgrass Lophopyrum elongatum is involved in plant hormone signalling. Plant Physiology 125, 1429–1441.
CrossRef | PubMed |

Short DC, Colmer TD (1999) Salt tolerance in Halosarcia pergranulata subsp. pergranulata. Annals of Botany 83, 207–213.
CrossRef |

Slavich PG, Read BJ, Cullis BR (1990) Yield response of barley germplasm to field variation in salinity quantified using the EM-38. Australian Journal of Experimental Agriculture 30, 551–556.
CrossRef |

Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 1057–1060.
CrossRef |

Srivastava JP, Jana S (1984) Screening wheat and barley germplasm for salt tolerance. In ‘Salinity tolerance in plants: strategies for crop improvement’. (Eds RC Staples, GH Toenniessen) pp. 273–283. (Wiley: New York)

Suhayda CG, Redmann RE, Harvey BL, Cipywnyk AL (1992) Comparative response of cultivated and wild barley species to salinity stress and calcium supply. Crop Science 32, 154–163.

Taeb M, Koebner RMD, Forster BP (1993) Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome 36, 825–830.

Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91, 503–527.
CrossRef | PubMed |

Thomson CJ, Colmer TD, Watkin ELJ, Greenway H (1992) Tolerance of wheat (Triticum aestivum cvs. Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytologist 120, 335–344.

Troyo-Dieguez E, Ortega-Rubio A, Maya Y, Leon JL (1994) The effect of environmental conditions on the growth and development of the oilseed halophyte Salicornia bigelovii Torr in arid Baja California Sur, Mexico. Journal of Arid Environments 28, 207–213.

Tyerman SD, Skerrett IM (1998) Root ion channels and salinity. Scientia Horticulturae 78, 175–235.
CrossRef |

USDA-ARS (2005) Salt tolerance databases. George E. Brown Jr Salinity Laboratory, Riverside, CA, USA. Available at [verified 7 November 2005]

von Bothmer R, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I (1991) ‘An ecogeographical study of the genus Hordeum. In ‘Systematic and ecogeographic studies on crop genepools. Vol. 7’. pp. 73–78. (International Board for Plant Genetic Resources: Rome)

Wagoner P (1995) Intermediate wheatgrass (Thinopyrum intermedium). Development of a perennial grain crop. In ‘Cereals and pseudocereals’. (Ed. JT Williams) pp. 247–259. (Chapman and Hill: London)

Wang RR-C, Hsiao C (1989) Genome relationship between Thinopyrum bessarabicum and T. elongatum: revisted. Genome 32, 802–809.

Wang RR-C, Li X-M, Hu Z-M, Zhang J-Y, Larson SR, Zhang X-Y, Grieve CM, Shannon MC (2003) Development of salinity-tolerant wheat recombinant liunes from a wheat disomic addition line carrying a Thinopyrum junceum chromosome. International Journal of Plant Sciences 164, 25–33.
CrossRef |

Watson R, Pritchard J, Malone M (2001) Direct measurement of sodium and potassium in the transpiration stream of salt-excluding and non-excluding varieties of wheat. Journal of Experimental Botany 52, 1873–1881.
CrossRef | PubMed |

Wei W, Bilsborrow PE, Hooley P, Fincham DA, Lombi E, Forster BP (2003) Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe an its derived mutant Golden Promise. Plant and Soil 250, 183–191.
CrossRef |

Weimberg R, Shannon MC (1988) Vigor and salt tolerance in 3 lines of tall wheatgrass. Physiologia Plantarum 73, 232–237.

White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Annals of Botany 88, 967–988.
CrossRef |

Wolf O, Munns R, Tonnet ML, Jeschke WD (1991) The role of the stem in the partitioning of Na+ and K+ in salt-treated barley. Journal of Experimental Botany 42, 697–704.

Wyn Jones RG, Storey R, Leigh RA, Ahmad N, Pollard A (1977) A hypothesis on cytoplasmic osmoregulation. In ‘Regulation of cell membrane activities in plants’. (Eds E Marre, O Ciferri) pp. 121–136. (Elsevier: Amsterdam)

Xue Z-Y, Zhi D-Y, Xue G-P, Zhang H, Zhao Y-X, Xia G-M (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science 167, 849–859.
CrossRef |

Yancey PH (1994) Compatible and counteracting solutes. In ‘Cellular and molecular physiology of cell volume regulation’. (Ed. K Strange) pp. 81–109. (CRC Press: Boca Raton)

Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222.
PubMed |

Yeo AR, Flowers TJ (1983) Varietal differences in the toxicity of sodium ions in rice leaves. Physiologia Plantarum 59, 189–195.

Yeo AR, Flowers TJ (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Australian Journal of Plant Physiology 13, 161–173.

Yeo AR, Flowers TJ (1994) ‘Soil mineral stresses: approaches to crop improvement.’ (Springer-Verlag: Berlin)

Yeo AR, Yeo ME, Caporn SJM, Lachno DR, Flowers TJ (1985) The use of 14C ethane diol as a quantitative tracer for the transpirational volume flow of water and an investigation of the effects of salinity upon transpiration, net sodium accumulation and endogenous ABA in individual leaves of Oryza sativa (L). Journal of Experimental Botany 36, 1099–1109.

Yeo AR, Yeo ME, Flowers SA, Flowers TJ (1990) Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theoretical and Applied Genetics 79, 377–384.
CrossRef |

Zahran MA (1994) ‘Juncus and Kochia – fiber-producing and fodder-producing halophytes under salinity and aridity stress.’ (Marcel Dekker: New York)

Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar:sodium accumulation. Proceedings of the National Academy of Sciences USA 98, 12 832–12 836.

Zhang G-Y, Guo Y, Chen S-L, Chen S-Y (1995) RFLP tagging of a salt tolerance gene in rice. Plant Science 110, 227–234.
CrossRef |

Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6, 441–445.
CrossRef | PubMed |

Zurayk RA, Baalbaki R (1996) Inula crithmoides: a candidate plant for saline agriculture. Arid Soil Research and Rehabilitation 10, 213–223.

1 ECe means saturated soil paste extract. In Australia, most soil EC determinations use 1:5 (soil:water, w/v) extracts; approximate conversion factors for EC1:5 to ECe are 13 for sandy soils, decreasing to 7 for clayey soils (Rogers et al. 2005). At 20°C, 10 mmol NaCl/L has an EC of 1.0 dS/m, 100 mmol NaCl/L an EC of 9.6 dS/m, 500 mmol NaCl/L an EC of 42 dS/m, and ocean water an EC of about 50 dS/m (Munns 2005).

Rent Article (via Deepdyve) Export Citation Cited By (116)